JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 1 (2019): Journal of the Chilean Chemical Society
Original Research Papers

POLYMERIZED SILICON (SiO2·nH2O) IN EQUISETUM ARVENSE: POTENTIAL NANOPARTICLE IN CROPS

Víctor García-Gaytán
Laboratorio de Análisis y Diagnóstico del Patrimonio – LADIPA, El Colegio de Michoacán
Emanuel Bojórquez-Quintal
Laboratorio de Análisis y Diagnóstico del Patrimonio – LADIPA, El Colegio de Michoacán
Fanny Hernández-Mendoza
Recursos Genéticos y Productividad, Colegio de Postgraduados, Campus Montecillo
Dhirendra K. Tiwari
Laboratorio de Análisis y Diagnóstico del Patrimonio – LADIPA, El Colegio de Michoacán
Nestor Corona-Morales
Laboratorio de Análisis y Diagnóstico del Patrimonio – LADIPA, El Colegio de Michoacán Centro de Estudios de Gegrafía Humana, El Colegio de Michoacán
Zahrabeigom Moradi-Shakoorian
Department of Horticultural Science and Landscape in Tehran University
Published March 27, 2019
Keywords
  • Biotic and abiotic stress,
  • nanoparticles,
  • silicon,
  • performance,
  • epidermis
How to Cite
García-Gaytán, V., Bojórquez-Quintal, E., Hernández-Mendoza, F., K. Tiwari, D., Corona-Morales, N., & Moradi-Shakoorian, Z. (2019). POLYMERIZED SILICON (SiO2·nH2O) IN EQUISETUM ARVENSE: POTENTIAL NANOPARTICLE IN CROPS. Journal of the Chilean Chemical Society, 64(1). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1038

Abstract

All technological innovation that influences research to achieve yields and counteract biotic and abiotic stress in crops should be a priority for governments and scientists around the world. Silicon nanoparticles (NpSi) in the production and protection of crops are used as a sustainable strategy. In addition to NpSi, other nanoparticles have been applicable in areas such as environmental remediation, medicine and smart sensors. There are plants that accumulate high concentrations of Si in their tissues, such as “horsetail” (Equisetum arvense). A recent analysis of the elemental composition of E. arvense in a cross section, epidermis, and total biomass indicated that the Si concentration was higher in comparison with macro and micronutrients. Elemental mapping showed that all polymerized silicon (SiO2 · nH2O) is available in the epidermis of Equisetum. Currently, our team is investigating the extraction, purification and quantification of SiNp. The lines of emerging research should be those related to the interaction of SiNp in the cell wall, concentration and intelligent application with aerial equipment in crops such as vegetables, cereals, and fruits.

References

  1. M. Luyckx, J. F. Hausman, S. Lutts, G. Guerriero, Front Plant Sci 8, 411, (2017).
  2. H. Etesami, B. R. Jeong, Ecotoxicol Environ Saf 147, 881-896, (2018).
  3. O. Markovich, E. Steiner, Š. Kouřil, P. Tarkowski, A. Aharoni, R. Elbaum, Plant Cell Environ 40, 1189-1196, (2017).
  4. R. Prasad, A. Bhattacharyya, Q. D. Nguyen, Front Microbiol 8, 1014, (2017).
  5. J. Montpetit, J. Vivancos, N. Mitani-Ueno, N. Yamaji, W. Rémus-Borel, F. Belzile, R. R. Bélanger, Plant Mol Biol 79, 35-46, (2012).
  6. J. Sangeetha, D. Thangadurai, R. Hospet, E. R. Harish, P. Purushotham, M. A. Mujeeb, S. B. Araneda, Nanotechnology. Springer, Singapore, (2017).
  7. E. Epstein, Proc Natl Acad Sci U S A 91, 11-17, (1994).
  8. D. Debona, F. A. Rodrigues, L. E. Datnoff, Annu Rev Phytopathol 55, 85-107, (2017).
  9. R. J. Haynes, Advances in Agronomy. Academic Press, (2017).
  10. J. F. Ma, N. Yamaji, Trends in plant science 11, 392-397, (2006).
  11. C. J. Prychid, P. J. Rudall, M. Gregory, Bot Rev 69, 377-440, (2003).
  12. N. Mitani, J. F. Ma, T. Iwashita, Plant Cell Physiol 46, 279-283, (2005).
  13. J. F. Ma, N. Yamaji, Trends in Plant Science 20, 435-442, (2015).
  14. M. J. Hodson, P. J. White, A. Mead, M. R. Broadley, Ann Bot 96, 1027- 1046, (2005).
  15. H. A. Currie, C. C. Perry, Annals of Botany 100, 1383-1389, (2007).
  16. A. Frew, L. A. Weston, O. L. Reynolds, G. M. Gurr, Ann Bot 121, 1265- 1273, (2018).
  17. Zaid, F. Gul, M. A. Ahanger, P. Ahmad, Metabolites and Regulation Under Environmental Stress, (2018).
  18. M. A. Limmer, J. Mann, D. C. Amaral, R. Vargas, A. L Seyfferth, Sci Total Environ 624, 1360-1368, (2018).
  19. M. Rizwan, S. Ali, M. Ibrahim, M. Farid, M. Adrees, S. A. Bharwana, F. Abbas, Environ Sci Pollut Res Int 22, 15416-15431, (2015).
  20. S. Muneer, Y. G. Park, A. Manivannan, P. Soundararajan, B. R. Jeong, Int J Mol Sci 15, 21803-21824, (2014).
  21. Yin, L., Wang, S., Li, J., Tanaka, K., Oka, M. Acta Physiol Plant 35, 3099- 3107, (2013).
  22. Y. H. Kim, A. L. Khan, M. Waqas, J. K. Shim, D. H. Kim, K. Y. Lee, I. J. Lee, J. Plant Growth Regul 33, 137-149, (2014).
  23. Meharg, A. A. Meharg, Environ Exp Bot 120, 8-17, (2015).
  24. Y. Liang, W. Sun, Y. G. Zhu, P. Christie, Environ Pollut 147, 422-428, (2007).
  25. W. Chen, X. Yao, K. Cai, J. Chen, Biol Trace Elem Res 142, 67-76, (2011).
  26. K. P. V. da Cunha, C. W. A. do Nascimento, Water Air Soil Pollut 197, (1-4), 323, (2009).
  27. M. R. Romero-Aranda, O. Jurado, J. Cuartero, J Plant Physiol 163, 847- 855, (2006).
  28. Y. Liang, J. Zhu, Z. Li, G. Chu, Y. Ding, J. Zhang, W. Sun, Environ Exp Bot 64, 286-294, (2008).
  29. H. Miao, X. G. Han, W. H. Zhang, Ann Bot 105, 967-973l, (2010).
  30. H. F. Bakhat, N. Bibi, Z. Zia, S. Abbas, H. M. Hammad, S. Fahad, S. Saeed, Crop Prot 104, 21-34, (2018).
  31. Abdel Latef, A. A., & Tran, L. S. P, Frontiers in plant science 7, 243, (2016).
  32. U. Sienkiewicz-Cholewa, J. Sumisławska, E. Sacała, M. Dziągwa-Becker, R. Kieloch, Acta Physiol Plant 40, 54, (2018).
  33. T. Abbas, A. Sattar, M. Ijaz, M. Aatif, S. Khalid, A. Sher, Hortic Environ Biotechnol 58, 342-349, (2017).
  34. R. Hajiboland, N. Moradtalab, Z. Eshaghi, J. Feizy, Newzeal J Crop Hort 46, 144-161, (2018).
  35. T. Rangwala, A. Bafna, N. Vyas, R. Gupta, Indian J Agr Sci 52, 9-15.
  36. K. Tripathi, S. Singh, V. P. Singh, S. M. Prasad, D. K. Chauhan, N. K. Dubey, Front Env Sci 4, 46, (2016).
  37. Epstein, Ann Appl Biol 155, 155-160, (2009).
  38. J. Pozo, M. Urrestarazu, I. Morales, J. Sánchez, M. Santos, F. Dianez, J. E. Álvaro, HortScience 50, 1447-1452, (2015).
  39. M. Wang, L. Gao, S. Dong, Y. Sun, Q. Shen, S. Guo, Front Plant Sci 8, 701, (2017).
  40. R. M. R. N. K. Ratnayake, M. Y. U. Ganehenege, H. M. Ariyarathne, W. A. M. Daundasekera, Ceylon J Sci 47, 49-55, (2018).
  41. R. Suriyaprabha, G. Karunakaran, R. Yuvakkumar, P. Prabu, V. Rajen¬dran, N. Kannan, J Nanopart Res 14, 1294, (2012).
  42. M. H. Siddiqui, M. H. Al-Whaibi, Saudi J Biol Sci 21, 13-17, (2014).
  43. M. H. Siddiqui, M. H. Al-Whaibi, M. Firoz, M. Y. Al-Khaishany, Spring¬er, Cham. pp. 19-35, (2015).
  44. M. Janmohammadi, T. Amanzadeh, N. Sabaghnia, V. Ion, Bot Lith 22, 53-64, (2016).
  45. Laane, H. M. Plants 7, (2018).
  46. N. Dasgupta, S. Ranjan, C. Ramalingam, Environ Chem Lett 15, 591-605, (2017).
  47. J. S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra, S. Duhan, Biotech¬nol Rep 15, 11-23, (2017).
  48. Mastronardi, P. Tsae, X. Zhang, C. Monreal, M. C. DeRosa, Springer, Cham, (2015).
  49. S. M. Rodrigues, P. Demokritou, N. Dokoozlian, C. O. Hendren, B. Karn, M. S. Mauter, P. Welle, Environ Sci Nano 4, 767-781, (2017).
  50. T. A. Shalaby, Y. Bayoumi, N Abdalla, H. Taha, T. Alshaal, S. Shehata, H. El-Ramady, Springer, Cham. pp. 283-312, (2016).
  51. A. Ditta, M. Arshad, M. Ibrahim, Nanotechnology and plant sciences. Springer, Cham, (2015).
  52. R. Raliya, V. Saharan, C. Dimkpa, P. Biswas, J Agric Food Chem, (2017).
  53. Shukla, P. K., Misra, P., Kole, C. In Plant Nanotechnology Springer, Cham, (2016).
  54. P. Wang, E. Lombi, F. J. Zhao, P. M. Kopittke, Trends Plant Sci 21, 699- 712, (2016).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP