JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 1 (2019): Journal of the Chilean Chemical Society
Original Research Papers

CARBON NANOTUBES–IONIC LIQUID GEL. CHARACTERIZATION AND APPLICATION TO PSEUDOEPHEDRINE AND CHLORPHENIRAMINE DETERMINATION IN PHARMACEUTICALS

M. Pérez-Ortiz
Chemical and Pharmaceutical Sciences Faculty, University of Chile
P. Pizarro
Chemical and Pharmaceutical Sciences Faculty, University of Chile
A. Álvarez-Lueje
Chemical and Pharmaceutical Sciences Faculty, University of Chile
Published March 27, 2019
Keywords
  • Pseudoephedrine,
  • Chlorpheniramine,
  • Carbon nanotubes,
  • Ionic liquids,
  • Modified electrodes,
  • Voltammetry
  • ...More
    Less
How to Cite
Pérez-Ortiz, M., Pizarro, P., & Álvarez-Lueje, A. (2019). CARBON NANOTUBES–IONIC LIQUID GEL. CHARACTERIZATION AND APPLICATION TO PSEUDOEPHEDRINE AND CHLORPHENIRAMINE DETERMINATION IN PHARMACEUTICALS. Journal of the Chilean Chemical Society, 64(1). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1041

Abstract

A multi-walled carbon nanotube (MWCNT)-ionic liquid (IL) film-modified glassy carbon electrode (GCE) was constructed for the determination of pseudo­ephedrine (PE) and chlorpheniramine (CP) by differential pulse voltammetry (DPV).

The MWCNT-IL film has shown an obvious electrocatalytic activity towards oxidation of PE and CP, since it increases the electroactive area, facilitates the electron transfer and significantly enhances the oxidation peak current of both. Also a synergistic effect between MWCNT and IL was detected; it improves the conductivity, resulting in a better response, thus the modified electrode presented higher sensitivity.

Under the optimum conditions, the oxidation peak currents were linearly proportional to the concentration in the range from 40.3 to 161.3 μg/mL for PE and from 0.39 μg/mL to 27.4 μg/mL for CP. Detection limits were 32.4 μg/mL with 180 s accumulation for PE and 0.11 μg/mL with 240 s accumulation for CP.

Finally, the proposed sensitive and simple electrochemical method was successfully applied to PE and CP determination in a pharmaceutical formulation, and recoveries were acceptable.

References

  1. S.S. Hwang, J. Gorsline, J. Louie, D. Dye, D. Guinta, J. Clin. Pharmacol. 1995, 353, 259-267.
  2. S.U. Yasuda, A. Wellstein, P. Likhari, J.T. Barbey, R.L. Woosley, Clin. Pharmacol. Ther. 1995, 58, 210-220.
  3. X. Liu, L. Liu, H. Chen, X. Chen, J. Pharm. Biomed. Anal. 2007, 43, 1700–1705.
  4. Y. Dong, X. Chen, Y. Chen, X. Chen, Z. Hu, J. Pharm. Biomed. Anal. 2005, 39, 285-289.
  5. C. Celma, J.A. Allué, J. Prunonosa, C. Peraire, R. Obach, J. Chromatogr. A 2000, 870, 77-86.
  6. H.G Lou, H. Yuan, Z.R. Ruan, B. Jiang, J. Chromatogr. B 2010, 878, 682– 688.
  7. H. Li, C. Zhang, J. Wang, Y. Jiang, J.P. Fawcett, J. Gu, J. Pharm. Biomed. Anal. 2010, 51, 716-722.
  8. A. Acheampong, W.O. Gyasi, G. Darko, J. Apau, S. Addai-Arhin, Spring¬erplus 2016, 5, 625.
  9. E. Kalogria, M. Koupparis, I. Panderi, J. AOAC Int. 2010, 93, 1093-101.
  10. R.P. Viswanath, R.M. Useni, B. Varaprasad, P. Somasekhar, J. Pharm. Res. 2011, 4, 1225–1227.
  11. A. Yacobi, Z.M. Look, C.M. Lai, J. Pharm. Sci. 1978, 67, 1668-1670.
  12. M.D. Paciolla, S.A. Jansen, S.A. Martellucci, A.A. Osei, J. Pharm. Bio¬med. Anal. 2001, 26, 143-149.
  13. M. Gil-Agustı́, L. Monferrer-Pons, M.C. Garcı́a-Alvarez-Coque, J. Esteve -Romero, Talanta 2001, 54, 621-630.
  14. E. Jacobsen, K. Høgberg, Anal. Chim. Acta 1974, 71, 157-163.
  15. H.M. Abu-Shawish, Electroanalysis 2008, 20, 491-497.
  16. S.D. Lamani, R.N. Hegde, A.P. Savanur, S.T. Nandibewoor, Electroanaly¬sis 2011, 23, 347-354.
  17. M. Amiri, M. Alimoradi, K. Nekoueian, A. Bezaatpour, Ind. Eng. Chem. Res. 2012, 51, 14384–14389.
  18. B. Muralidharan, G. Gopu, S. Laya, C. Vedhi, P. Manisankar, Mat. Sci. Appl. 2011, 2, 957-963.
  19. E.A. Khudaish, M. Al-Hinaai, S. Al-Harthy, K. Laxman, Electrochim. Acta 2014, 135, 319-326.
  20. J.R. González Lomba, E. Pinilla Gil, P. Cintas Moreno, R.M. García- Moncó Carra, A. Sánchez Misiego, J. Electroanal. Chem. 1996, 410, 87- 92.
  21. Y.-Q. Un, W. You, Z.-N. Gao, Chin. J. Appl. Chem. 2008, 01.
  22. H. Ahmara, A. Reza Fakhari, Anal. Methods 2012, 4, 812-818.
  23. F. Anson, Anal. Chem. 1964, 36, 932-934.
  24. R. Adams, Electrochemistry at Solid Electrodes, Marcel Dekker, New York, 1969.
  25. T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Science 2003, 300, 2072-2074.
  26. X. Liu, Z. Ding, Y. He, Z. Xue, X. Zhao, X. Lu, Colloids Surf. B Biointerfaces. 2010, 79, 27-32.
  27. S. Bollo, N.F. Ferreyra, G.A. Rivas, Electroanalysis 2007, 19, 833-840.
  28. B. Pérez-Mella, A. Álvarez-Lueje, Electroanalysis 2013, 25, 2193–2199.
  29. C.O.Wilson, O. Gisvold, J.H. Block, J.M. Beale, Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical chemistry. Philadelphia: Lippincott Williams & Wilkins, 2004.
  30. A. Gaber, M. Mersal, J. Solid State Electrochem. 2012, 16, 2031–2039.
  31. A. Meareg, L. Worku, A. Shimelis, Anal. Bioanal. Chem. 2011, 4, 365 - 378.
  32. D.K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms, VCH, New York, 1993.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP