JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 1 (2019): Journal of the Chilean Chemical Society
Original Research Papers

A PROMISING DNA GROOVE BINDER AND PHOTOCLEAVER BASED ON A DINUCLEAR RUTHENIUM(II) COMPLEX

Ya-xuan Mi
College of Chemistry & Environmental Science, Hebei University
Shuang Wang
College of Chemistry & Environmental Science, Hebei University
Xue-Xue Xu
College of Chemistry & Environmental Science, Hebei University
Hua-Qian Zhao
College of Chemistry & Environmental Science, Hebei University
Ze-Bao Zheng
College of Chemistry and Chemical Engineering, Taishan University
Xiao-Long Zhao
College of Chemistry & Environmental Science, Hebei University
Published March 27, 2019
Keywords
  • Ruthenium(II) complex,
  • Calf thymus DNA,
  • Groove mode
How to Cite
Mi, Y.- xuan, Wang, S., Xu, X.-X., Zhao, H.-Q., Zheng, Z.-B., & Zhao, X.-L. (2019). A PROMISING DNA GROOVE BINDER AND PHOTOCLEAVER BASED ON A DINUCLEAR RUTHENIUM(II) COMPLEX. Journal of the Chilean Chemical Society, 64(1). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1051

Abstract

A dinuclear ruthenium complex [Ru2(bpy)4(bip-phenol)](ClO4)4 {bpy = 2,2′-bipyridine, bip-phenol = 2,4-bis(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl) phenol} has been synthesized and characterized. The calf thymus (ct) DNA binding properties of the complex are investigated by means of DNA viscosity and optical spectroscopic techniques of UV-visible absorption and emission spectral titrations, steady-state emission quenching with ferrocyanide, ethidium bromide competitive binding, DNA thermal denaturation and reverse salt effect, together with molecular simulation technology. The results suggest that the complex is a promising DNA groove binder with a large DNA binding constant on 106 M−1 order of magnitude. The fluorescence of the complex manifests by 6.3-fold upon binding saturately to DNA. The complex is also demonstrated to be an efficient photocleaver of pBR 322 DNA.

References

  1. J.K. Barton, E.D. Olmon, P.A. Sontz, Coord. Chem. Rev. 255, 619-634, (2011).
  2. S.S. Bhat, V.K. Revankar, R.V. Pinjari, S. Naveen, C. Bogar, K. Bhat, V.A. Kawade, New J. Chem. 41, 5513-5520, (2017).
  3. H.K. Liu, P.J. Sadler, Acc. Chem. Res. 44, 349-359, (2011).
  4. M.R. Gill, J.A. Thomas, Chem. Soc. Rev. 41, 3179-3192, (2012).
  5. B.J. Pages, D.L. Ang, E.P. Wright, J.R. Aldrich-Wright, Dalton Trans. 44, 3505-3526, (2015).
  6. J.L. Morgan, C.B. Spillane, J.A. Smith, D.P. Buck, J.G. Collins, F.R. Keene, Dalton Trans. 10, 4333-4342, (2007).
  7. S.V. Sagar Babu, K.S.V. Krishna Rao, Y. Ill Lee, J. Chil. Chem. Soc. 62, 3447-3453, (2017).
  8. K. Margandan, S.J.M. Jebastin, J. Chil. Chem. Soc. 62, 3691-3699, (2017).
  9. J. Aldrich-Wright, C. Brodie, E.C. Glazer, N.W. Luedtke, L. Elson- Schwab, Y. Tor, Chem. Commun. 1018-1019, (2004).
  10. S.A. Ezadyar, A.S. Kumbhar, A.A. Kumbhar, A. Khan, Polyhedron 36, 45-55, (2012).
  11. C.C. Ju, A.G. Zhang, C.L. Yuan, X.L. Zhao, K.Z. Wang, J. Inorg. Biochem. 105, 435-443, (2011).
  12. C. Rajput, R. Rutkaite, L. Swanson, I. Haq, J.A. Thomas, Chem. Eur. J. 12, 4611-4619, (2006).
  13. H. Chao, Y.X. Yuan, F. Zhou, L.N. Ji, Trans. Met. Chem. 31, 465-469, (2006).
  14. P. Liu, B.Y. Wu, J. Liu, Y.C. Dai, Y.J. Wang, K.Z. Wang, Inorg. Chem. 55, 1412-1422, (2016).
  15. F.R. Liu, K.Z. Wang, G.Y. Bai, Y.A. Zhang, L.H. Gao, Inorg. Chem. 43, 1799-1806, (2004).
  16. J. Andersson, M. Li, P. Lincoln, Chem. Eur. J. 16, 11037-11046, (2010).
  17. A.G. Clark, M.N. Naufer, F. Westerlund, P. Lincoln, I. Rouzina, T. Paramanathan, M.C. Williams, Biochemistry 57, 614-619, (2018).
  18. A.A. Almaqwashi, T. Paramanathan, I. Rouzina, M.C. Williams, Nucleic Acids Res. 44, 3971-3988, (2016).
  19. A.A. Almaqwashi, T. Paramanathan, P. Lincoln, I. Rouzina, F. Westerlund, M.C. Williams, Nucleic Acids Res. 42, 11634-11641, (2014).
  20. J. Andersson, P. Lincoln, J. Phys. Chem. B 115, 14768-14775, (2011).
  21. V. Gonzalez, T. Wilson, I. Kurihara, A. Imai, J.A. Thomas, J. Otsuki, Chem. Commun. 1868-1870, (2008).
  22. X.L. Zhao, Z.S. Li, Z.B. Zheng, A.G. Zhang, K.Z. Wang, Dalton Trans. 42, 5764-5777, (2013).
  23. A. Ghosh, P. Das, M.R. Gill, P. Kar, M.G. Walker, J.A. Thomas, A. Das, Chem. Eur. J. 17, 2089-2098, (2011).
  24. L. Li, H.M. Liu, X.K. Liu, S.Y. Liao, Y.T. Lan, Q. Wu, X.C. Wang, Q. Wang, S.Y. Zhang, W.J. Mei, RSC Adv. 7, 23727-23734, (2017).
  25. Q. Wu, K.D. Zheng, S.Y. Liao, Y. Ding, Y.Q. Li, W.J. Mei, Organometallics 35, 317-326, (2016).
  26. Y.H. Chen, Q. Wu, X.C. Wang, Q. Xie, Y.Y. Tang, Y.T. Lan, S.Y. Zhang, W.J. Mei, Materials 9, 386, (2016).
  27. Q. Wu, T.F. Chen, Z. Zhang, S.Y. Liao, X.H. Wu, J. Wu, W.J. Mei, Y.H. Chen, W.L. Wu, L.L. Zeng, Dalton Trans. 43, 9216-9225, (2014).
  28. Z.B. Zheng, Q.Y. Huang, Y.F. Han, J. Zuo, Y.N. Ma, Sens. Actuat. B 253, 203-212, (2017).
  29. V. Muthuraj, M. Umadevi, J. Mol. Struct. 1157, 201-209, (2018).
  30. W.X. Hong, H.W. Huang, T.W. Huang, X. Xu, Q.G. Han, G.F. Wang, H. Xu, S. Duan, Y.H. Duan, X. Long, Y. Liu, Z.L. Hu, J. Inorg. Biochem. 180, 54-60, (2018).
  31. M. Mohanraj, G. Ayyannan, G. Raja, C. Jayabalakrishnan, Mat. Sci. Eng. C-Mater. 69, 1297-1306, (2016).
  32. C.W. Jiang, J. Inorg. Biochem. 98, 497-501, (2004).
  33. V. Muthuraj, M. Umadevi, J. Mol. Struct. 1157, 201-209, (2018).
  34. D. Suh, J.B. Chaires, Bioorg. Med. Chem. 3, 723-728, (1995).
  35. A.G. Zhang, Y.Z. Zhang, Z.M. Duan, K.Z. Wang, H.B. Wei, Z.Q. Bian, C.H. Huang, Inorg. Chem. 50, 6425-6436, (2011).
  36. J.Z. Wu, L. Yuan, J. Inorg. Biochem. 98, 41-45, (2004).
  37. F.M. O’Reilly, J.M. Kelly, New J. Chem. 22, 215-217, (1998).
  38. S. Mardanya, S. Karmakar, D. Mondal, S. Baitalik, Inorg. chem. 55, 3475- 3489, (2016).
  39. S.J. Burya, D.A. Lutterman, C. Turro, Chem. Commun. 47, 1848-1850, (2011).
  40. M.M. Milutinović, A. Rilak, I. Bratsos, O. Klisurić, M. Vraneš, N. Gligorijević, S. Radulović, Ž.D. Bugarčić, J. Inorg. Biochem. 169, 1-12, (2017).
  41. R.B. Nair, E.S. Teng, S.L. Kirkland, C.J. Murphy, Inorg. Chem. 37, 139- 141, (1998).
  42. L. Xu, Y. Chen, H. Wei, W.S. Wu, Z.Z. Li, Y.W. Lin, H. Chao, L.N. Ji, Chem. Res. Chin. Univ. 30, 461-467, (2014).
  43. A. Ambroise, B.G. Maiya, Inorg. Chem. 39, 4264-4272, (2000).
  44. F. Gao, H. Chao, F. Zhou, Y.X. Yuan, B. Peng, L.N. Ji, J. Inorg. Biochem. 100, 1487-1494, (2006).
  45. J.M. Kelly, A.B. Tossi, D.J. McConnell, C. OhUigin, Nucleic Acids Res. 13, 6017-6034, (1985).
  46. Y.J. Liu, W.J. Mei, J.Z. Lu, H.J. Zhao, L.X. He, F.H. Wu, J. Coord. Chem. 61, 3213-3224, (2008).
  47. X.L. Hong, H. Chao, L.J. Lin, K.C. Zheng, H. Li, X.L. Wang, F.C. Yun, L.N. Ji, Helv. Chim. Acta. 87, 1180-1193, (2004).
  48. S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 32, 2573- 2584, (1993).
  49. F. Leng, J.B. Chairs, M.J. Waring, Nucleic Acids Res. 31, 6191-6197, (2003).
  50. N.M. Gabra, B. Mustafa, Y.P. Kumar, C.S. Devi, A. Srishailam, P.V. Reddy, K.L. Reddy, S. Satyanarayana, J. Fluoresc. 24, 169-181, (2014).
  51. Mudasir, K. Wijaya, E.T. Wahyuni, N. Yoshioka, H. Inoue, Biophys. Chem. 121, 44-50, (2006).
  52. F. Pierard, A.D. Guerzo, A.K. Mesmaeker, M. Demeunynck, J. Lhomme, Phys. Chem. Chem. Phys. 3, 2911-2920, (2001).
  53. S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 31, 9319- 9324, (1992).
  54. X.W. Liu, Y.M. Shen, Z.X. Li, X. Zhong, Y.D. Chen, S.B. Zhang, Spectrochim. Acta A 149, 150-156, (2015).
  55. C.W. Jiang, Eur. J. Inorg. Chem. 2004, 2277-2282, (2004).
  56. Y.N. Liu, T.F. Chen, Y.S. Wong, W.J. Mei, X.M. Huang, F. Yang, J. Liu, W.J. Zheng, Chem. Biol. Interact. 183, 349-356, (2010).
  57. Y.P. Kumar, C.S. Devi, A. Srishailam, N. Deepika, V.R. Kumar, P.V. Reddy, J. Fluoresc. 26, 2119-2132, (2016).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP