JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 2 (2020): Journal of the Chilean Chemical Society
Original Research Papers

EFFICIENT SYNTHESIS OF NOVEL TRICYCLIC BENZOXAZINE DERIVATIVES VIA RING OPENING OF EPOXIDES ALONG THE MP AND DFT STUDIES OF STRUCTURAL, SPECTROSCOPIC (IR, RAMAN, UV-VIS), THERMODYNAMIC, ORBITALS AND NLO PROPERTIES OF DESIRED TRICYCLIC BENZOXAZINE DERIVATI

Ameer Fawad Zahoor
Government College University Faisalabad
Published July 18, 2020
Keywords
  • Chelated enolates, Ring opening, Benzoxazine, DFT, NBO.
How to Cite
Mansha, A., Zahoor, A. F., ZAHID, F. M., Asim, S., & FAISAL, S. (2020). EFFICIENT SYNTHESIS OF NOVEL TRICYCLIC BENZOXAZINE DERIVATIVES VIA RING OPENING OF EPOXIDES ALONG THE MP AND DFT STUDIES OF STRUCTURAL, SPECTROSCOPIC (IR, RAMAN, UV-VIS), THERMODYNAMIC, ORBITALS AND NLO PROPERTIES OF DESIRED TRICYCLIC BENZOXAZINE DERIVATI. Journal of the Chilean Chemical Society, 65(2), 4769-4777. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1396

Abstract

Ring opening of 2-nitro phenyl glycidyl ether by chelated amino acid ester enolate provides access to desired novel benzoxazine derivative just over a few steps. Theoretical study on the molecular structure of 2,2,2-trifluoro-N-(1-oxo-2,3,3a,4-tetrahydro-1H-benzo[b]pyrrolo[1,2-d][1,4]ox-azin-2-yl) acetamide (S11) is presented by using second order Møller Plesset (MP2) as well as density functional theory (DFT) level calculations. The calculated vibrational frequencies were assigned into normal modes of vibration by the use of potential energy distribution (PED). The positive charge on all hydrogen atoms were obtained by charge distribution calculations using Mulliken, electrostatic and natural charge distributions. Similar electrophilic and nucleophilic regions were observed from the calculated electrostatic potential surface calculations. The time dependent density functional theory (TD-DFT) calculations were performed to obtain electronic transitions within the molecule. The frontier molecular orbital (FMO) analysis was leading to the possible charge transfer within the molecule. The natural bond orbital (NBO) analysis provided information regarding the interaction between the donor and acceptor in bond. The statistical thermodynamic functions (dipole moment, internal energy, enthalpy, Gibbs free energy, entropy, heat capacities and partition functions) were calculated at the range of temperature from 10-500 K

 

1396.jpg

References

  1. F.A. Macias, D. Marin, A. Oliveros-Bastidas, J.M.G. Molinillo, Nat. Prod. Rep. 26, 478, (2009).
  2. N. Giubellina, P. Stabile, G. Leval, A.D. Perboni, Z. Cimarosti, P. Westerduin, J.W.B. Cooke, Org. Process Res. Dev. 14, 859, (2010).
  3. D. Zhou, B.L. Harrison, U. Shah, T.H. Andree, G.A. Hornby, R. Scerni, L.E. Schechter, D.L. Smith, K.M. Sullivan, R.E. Mewshaw, Bioorg. Med. Chem. Lett. 16, 1338, (2006).
  4. T. Taverne, O. Diouf, P. Depreux, J.H. Poupaert, D. Lesieur, B. Guardiola-Lemaître, P. Renard, M.-C. Rettori, D.-H. Caignard, B. Pfeiffer, J. Med. Chem. 41, 2010, (1998).
  5. A.-S. Bourlot, I. Sánchez, G. Dureng, G. Guillaumet, R. Massingham, A. Monteil, E. Winslow, M.D. Pujol, J.-Y. Mérour, J. Med. Chem. 41, 3142, (1998).
  6. S. Alper-Hayta, E. Akı-Sener, B. Tekiner-Gulbas, I. Yıldız, O. Temiz-Arpacı, I. Yalcın, N. Altanlar, Eur. J. Med. Chem. 41, 1398, (2006).
  7. A. Foroumadi, S. Emami, S. Mansouri, A. Javidnia, N. Saeid-Adeli, F.H. Shirazi, A. Shafiee, Eur. J. Med. Chem. 42, 985, (2007).
  8. K.C. Majumdar, K. Ray, S. Ponra, Tetrahedron Lett. 51, 5437, (2010).
  9. P.-F. Jiao, B.-X. Zhao, W.-W. Wang, Q.-X. He, M.-S. Wan, D.-S. Shin, J.-Y. Miao, Bioorg. Med. Chem. Lett. 16, 2862, (2006).
  10. M. Ghanbari, K. Jadidi, M. Mehrdad, N. Assempour, Tetrahedron 72, 4355, (2016).
  11. B. Liu, M. Yin, H. Gao, W. Wu, H. Jiang, J. Org. Chem. 78, 3009, (2013).
  12. A.T. Kurissery, G.A. Rajkumar, V.S. Arvapalli, V. Pitchumani, Tetrahedron Lett. 58, 3607, (2017).
  13. U. Kazmaier, A.F. Zahoor, Arkivoc iv, 6, (2011).
  14. A.F. Zahoor, S. Thies, U. Kazmaier, Beilstein J. Org. Chem. 7, 1299, (2011).
  15. A.F. Zahoor, U. Kazmaier, Synthesis 7, 1059, (2011).
  16. A.F. Zahoor, U. Kazmaier, Synthesis 18, 3020, (2011).
  17. H. Varshney, A. Ahmad, A. Rauf, F.M. Husain, I. Ahmad, J. Saudi Chem. Soc. 21, S394, (2017).
  18. P. Zhang, E.A. Terefenko, A. Fensome, Z. Zhang, Y. Zhu, J. Cohen, R. Winneker, J. Wrobel, J. Yardley, Bioorg. Med. Chem. Lett. 12, 787, (2002).
  19. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, F. Williams, Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, Jr. J.A. Montgomery, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16 Rev. B.01, Wallingford, CT, 2016.
  20. A.D. Becke, J. Chem. Phys. 98, 5648, (1993).
  21. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785, (1988).
  22. M.P. Andersson, P. Uvdal, J. Phys. Chem. A 109, 2937, (2005).
  23. J.P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 111, 11683, (2007).
  24. M.H. Jamróz, Spectrochim. Acta A 114, 220, (2013).
  25. M. Ali, A. Mansha, S. Asim, M. Zahid, M. Usman, N. Ali, J. Spectrosc. 2018, Article ID 9365153, (2018).
  26. N. Ali, A. Mansha, S. Asim, A.F. Zahoor, S. Ghafoor, M.U. Akbar, J. Mol. Struct. 1156, 571, (2018).
  27. A.E. Reed, F. Weinhold, J. Chem. Phys. 83, 1736, (1985).
  28. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671, (1992).
  29. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865, (1996).
  30. N.X. Wang, A.K. Wilson, J. Phys. Chem. A 109, 7187, (2005).
  31. P. Matczak, S. Wojtulewski, J. Mol. Model. 21, 41, (2015).
  32. R.K. Singh, A.K. Singh, J. Mol. Struct. 1129, 128, (2017).
  33. P. Rawat, R.N. Singh, J. Mol. Struct. 1097, 214, (2015).
  34. M. Karabacak, M. Kurt, M. Cinar, S. Ayyappan, S. Sudha, N. Sundaraganesan, Spectrochim. Acta A 92, 365, (2012).
  35. S. Gao, H.-T. Qu, F. Ye, Y. Fu, J. Chem. 2015, Article ID 268306, (2015).
  36. V. Balachandran, V. Karpagam, B. Revathi, M. Kavimani, G. Ilango, Spectrochim. Acta A 150, 631, (2015).
  37. J. Mohan, Organic spectroscopy: Principles & applications, 2nd ed., CRC Press, 2004.
  38. B. Raja, V. Balachandran, B. Revathi, K. Anitha, Mater. Res. Innov. 23, 330, (2018).
  39. S. Mühle, K.E. Süsse, D.G. Welsch, Phys. Lett. A 66, 25, (1978).
  40. M.R. Anoop, P.S. Binil, S. Suma, M.R. Sudarsanakumar, Y.S. Mary, H.T. Varghese, C.Y. Panicker, J. Mol. Struct. 969, 48, (2010).
  41. E. Kose, A. Atac, M. Karabacak, P.B. Nagabalasubramanian, A.M. Asiri, S. Periandy, Spectrochim. Acta A 116, 622, (2013).
  42. R.M. Silverstein, F.X. Webster, D.J. Kiemle, D.L. Bryce, Spectrometric identification of organic compounds, 8th ed., Wiley, 2014.
  43. G. Socrates, Infrared and Raman characteristic group frequencies: Tables and charts, 3rd ed., Wiley, 2004.
  44. J. Tonannavar, J. Yenagi, V. Sortur, V.B. Jadhav, M.V. Kulkarni, Spectrochim. Acta A 77, 351, (2010).
  45. A. Fu, D. Du, Z. Zhou, Spectrochim. Acta A 59, 245, (2003).
  46. A.K. Singh, R.K. Singh, J. Mol. Struct. 1089, 191, (2015).
  47. N.M. Kreienborg, C. Merten, Phys. Chem. Chem. Phys. 21, 3506, (2019).
  48. X. Assfeld, J.-L. Rivail, Chem. Phys. Lett. 263, 100, (1996).
  49. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735, (1985).
  50. D. Guo, L. Goodman, J. Phys. Chem. 100, 12540, (1996).
  51. Q. Liu, L. Qiu, Y. Wang, G. Lv, G. Liu, S. Wang, J. Lin, J. Mol. Model. 22, 84, (2016).
  52. V. Pophristic, L. Goodman, N. Guchhait, J. Phys. Chem. A 101, 4290, (1997).
  53. F. Weinhold, Nature 411, 539, (2001).
  54. C.-G. Liu, Z.-M. Su, X.-H. Guan, S. Muhammad, J. Phys. Chem. C 115, 23946, (2011).
  55. I. Fleming, Molecular orbitals and organic chemical reactions, John Wiley & Sons, 2011.
  56. L. Padmaja, M. Amalanathan, C. Ravikumar, I. Hubert Joe, Spectrochim. Acta A 74, 349, (2009).
  57. E. Scrocco, J. Tomasi, Adv. Quantum Chem. 11, 115, (1978).
  58. P. Sjoberg, P. Politzer, J. Phys. Chem. 94, 3959, (1990).
  59. A.A. Rashin, L. Young, I.A. Topol, S.K. Burt, Chem. Phys. Lett. 230, 182, (1994).
  60. A.-M. Kelterer, A. Mansha, F.J. Iftikhar, Y. Zhang, W. Wang, J.-H. Xu, G. Grampp,
  61. J. Mol. Model. 20, 2344, (2014).
  62. M. R. S. A. Janjua, Open Chem. 16, 978, (2018).
  63. X.-W. Li, E. Shibata, T. Nakamura, Mater. Trans. 44, 1004, (2003).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP