JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 1 (2017): Journal of the Chilean Chemical Society
Original Research Papers

VISIBLE RANGE PHOTOCATALYSTS FOR SOLID PHASE PHOTOCATALYTIC DEGRADATION OF POLYETHYLENE AND POLYVINYL CHLORIDE

Apeksha Gupta
Department of Chemical Engineering, National Institute of Technology, Raipur
Y. N. Lakshmi
Department of Chemical Engineering, National Institute of Technology Karnataka
R. Manivannan
Department of Chemical Engineering, National Institute of Technology, Raipur
S. Noyel Victoria
Department of Chemical Engineering, National Institute of Technology, Raipur Department of Chemical Engineering, National Institute of Technology Karnataka
Published June 5, 2017
Keywords
  • Photocatalysts,
  • Polyvinylchloride,
  • Polyethylene,
  • Solar radiation
How to Cite
Gupta, A., Lakshmi, Y. N., Manivannan, R., & Victoria, S. N. (2017). VISIBLE RANGE PHOTOCATALYSTS FOR SOLID PHASE PHOTOCATALYTIC DEGRADATION OF POLYETHYLENE AND POLYVINYL CHLORIDE. Journal of the Chilean Chemical Society, 62(1). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/156

Abstract

Solid phase photocatalytic degradation of polyethylene (PE) and polyvinyl chloride (PVC) with various photocatalysts such as ceria annealed at 350°C and 850°C, zinc oxide annealed at 250°C, copper sulfide and titania particles was studied under different light sources. Except titania, all the other photocatalysts performed reasonably well both in the visible and ultra-violet (UV) radiations. Ceria annealed at 850°C showed degradation efficiencies higher than 70% for PVC in the fluorescent and solar radiation. Ceria annealed at 350°C showed degradation efficiencies higher than 75% for polyethylene in fluorescent, solar and UV radiation. The Fourier transform infrared spectroscopy studies show the presence of adsorbed carbon dioxide on the degraded polymer- photocatalyst composite films. The UV-visible spectroscopic studies show that the ceria, zinc oxide and copper sulfide photocatalysts are active in the visible spectrum resulting in enhanced degradation efficiency in fluorescent and solar radiation. 

References

  1. J. Shang, M.Chai, Y. Zhu, J. Solid State Chemistry. 174, 104, (2003).
  2. W. Asghar, I.A. Qazi, H. Ilyas, A.A. Khan, M.A. Awan, M.R. Aslam, J. Nanomaterials, 1, (2011).
  3. X.U. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu, J. Molecular Catalysis A: Chemical 268, 101, (2007).
  4. Fa W, Zan L, Gong C, Zhong J, Deng K, Applied Catalysis B: Environmental 79, 216, (2008).
  5. C. Yang, C. Gong, T. Peng, K. Deng, L. Zan, J. Hazardous Materials 178, 152, (2010).
  6. X. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu, Applied Surface Science 254, 1825, (2008).
  7. F. Zhang, S.W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Applied Physics Letters 80, 127, (2002).
  8. M.K. Mohammad, H. Amin, N. Nasim, M. Lee, Materials Research 17,1039, (2014).
  9. R. Yang, P.A. Christensen, T.A. Egerton, J.R White, J Polymer Degradation and Stability 95, 1533, (2010).
  10. S. Chakrabarti, B. Chaudhuri, S. Bhattacharjee, P. Das, B.K. Dutta, J Hazardous Materials 154, 230, (2008).
  11. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, S.M.D. Patrick, D.D. Dionysiou, Applied Catalysis B: Environmental 125, 331, (2012).
  12. T. Wirunmongkol, N. Charoen, S. Pavasupree, Energy Procedia 34, 801, (2013).
  13. A.B. Sifontes, M. Rosales, F.J. Mendez, O. Oviedo, T. Zoltan, J. Nanomaterials, 1, (2013).
  14. A. Singh, R. Manivannan, S.N. Victoria, Arabian Journal of Chemistry, Article in press, (2015).
  15. R.T. Thomas, N. Sandhyarani, RSC Advances 3, 14080, (2013).
  16. M. Zhang, J. Wu, D. Lu, J. Yang, International J. Photoenergy, 2013, (2013).
  17. R. Bini, V. Schettino, Imperial College Press, London, 259, (2014).
  18. R.K.Velu Microbiological Research in Agroecosystem Management, Springer India, 2013.
  19. Y.V. Glazkovskii, V.E. Zgayevskii, S.P. Ruhinskii, N. M. Bakardzhiyev, Vysokomol. Soyed 8, 1472, (1966).
  20. E. Balan, A.M. Saitta, F. Mauri, G. Calas, American Mineralogist 86, 1321, (2001).
  21. T.S. Renuga Devi, S. Gayathri, International J. Pharmaceutical Sciences Review and Research 2, 106, (2010).
  22. E.Yousif, J Taibah Uni. for Sci. 7, 79, (2013).
  23. X. Colom, F. Carrillo, F. Nogues, P. Garriga, Polymer Degradation and Stability 80, 543, (2003).
  24. D. Jain, H.K. Daima, S. Kachhwaha, S.L. Kothari, Digest J. Nanomaterials and Biostructures 4, 557(2009).
  25. M. Arivazhagan, K. Sambathkumar, S. Jeyavijayan, J. Pure and Applied Physics 48, 716-722, (2010).
  26. S.G. Prasad, A. De, U. De, International J. of Spectroscopy 810936, 1, (2011).
  27. G.S. Uthayakumar, J. Chandhuru, S. Inbasekaran , A. Sivasubramanian, Asian J. Biomedical and Pharmaceutical Sci. 3, 12, (2013).
  28. S. Bhattacharyya, A. Gedanken, Microporous and Mesoporous Materials 110, 553, (2008).
  29. R.Vajtai, Springer Handbook of Nanomaterials 528, 2013.
  30. A.M.D. Farias, D.N. Thanh, M.A. Fraga, Applied Catalysis B: Environmental 93, 250, (2010).
  31. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, Advances in Nanoparticles 2, 45, (2013).
  32. H. Tan, Z. Zhao, W. Zhu, E.N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, Appl. Mater. Interfaces 6, 19184, (2014).
  33. S.K. Anirban, T. Paul, A. Dutta, RSC Adv. 5, 50186, (2015).
  34. J. W. Hu, Advanced Materials and Structural Engineering, CRC Press London, (2016).
  35. H.R. Pouretedal, A. Norozi, H. Keshavarz, A. Semnani, J. Hazardous Materials 162, 674, (2009).
  36. D.B. Smith, Photochemistry, Royal Society of Chemistry 17, (1986).
  37. S. Cho, W. Choi, J. Photochemistry and Photobiology A: Chemistry 143, 221, (2001).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP