JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 1 (2017): Journal of the Chilean Chemical Society
Original Research Papers

ELECTROPHILIC AND NUCLEOPHILIC CHEMICAL REACTIVITY OF NEUTRAL AND ANIONIC FORMS OF 4-CPA, 24D-CPA, 34-CPA AND 245T-CPA THROUGH CONCEPTUAL DFT REACTIVITY DESCRIPTORS

L. H. Mendoza-Huizar
Universidad Autónoma del Estado de Hidalgo. Academic Area of Chemistry
C. H. Rios-Reyes
Universidad Autónoma del Estado de Hidalgo. Academic Area of Chemistry
G. A. Álvarez-Romero
Universidad Autónoma del Estado de Hidalgo. Academic Area of Chemistry
M. E. Palomar-Pardavé
Universidad Autónoma Metropolitana-Azcapotzalco, Departamento de Materiales
M. T. Ramírez-Silva
Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química,
Published June 5, 2017
Keywords
  • 4-CPA,
  • 24D-CPA,
  • 34-CPA,
  • 245T-CPA,
  • Reactivity,
  • Fukui
  • ...More
    Less
How to Cite
Mendoza-Huizar, L. H., Rios-Reyes, C. H., Álvarez-Romero, G. A., Palomar-Pardavé, M. E., & Ramírez-Silva, M. T. (2017). ELECTROPHILIC AND NUCLEOPHILIC CHEMICAL REACTIVITY OF NEUTRAL AND ANIONIC FORMS OF 4-CPA, 24D-CPA, 34-CPA AND 245T-CPA THROUGH CONCEPTUAL DFT REACTIVITY DESCRIPTORS. Journal of the Chilean Chemical Society, 62(1). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/160

Abstract

In the present work, we have analyzed the electrophilic and nucleophilic chemical reactivity of the neutral and anionic chlorophenoxyacetic acid herbicides, 4-CPA, 24D-CPA, 34-CPA and 245T-CPA at the X/6-311++G(2d,2p) level of theory (where X= wB97XD, MPW91B1K and MP2). Chemical reactivity was analyzed in the aqueous phase and employing global and local DFT reactivity descriptors. The structural parameters derived from DFT calculations are equivalent to those obtained at the MP2 level. The Fukui Function values suggest that nucleophilic attacks to the neutral and anionic forms would cause dechlorination on 24D-CPA, 34-CPA and 245T-CPA and hydrogen abstraction in 4-CPA. At pH values lower than 2.7, electrophilic attacks would cause the cleavage of the ether bond in 4-CPA, 24D-CPA and 34-CPA and dechlorination in 245T-CPA. But, at pH > 3.6, electrophiles may cleave the ether bond to start the degradation of the four CPAs. 

References

  1. T. Csrhati, E. Forgacs, J. Chromatogr. B: Biomed. Sci. Appl. 717, 157 (1998).
  2. N. Serpone, E. Pelizzetti, Photocatalysis. Fundamentals and Applications, Ed. Wiley/Interscience, New York, (1989).
  3. L. Türker. Turk. J. Biol. 24, 291 (2000).
  4. R. L. Wain, Advan. Pest Control Res. 2, 263 (1958).
  5. J. M. Charles, H. C. Cunny, R. D. Wilson, J. S. Bus, Fundam. Appl. Toxicol. 33, 161 (1996).
  6. S. K. Hoar, A. Blair, F. F. Holmes, C. D. Boysen, J. R. Robel, R. Hoover, H. Fraumeni, J. Am. Med. Assoc. 256, 1141 (1986).
  7. B. Hileman, Chem. Eng. News, 74, 23 (1996).
  8. S. M. Bradberry, B. E. Watt, A. T. Proudfoot, J. A. Vale, J. Toxicol. Clin. Toxicol. 38, 111 (2000).
  9. G. G. Bond, R. Rossbacher, Brit. J. Ind. Med. 50, 340 (1993).
  10. M. Bjørling-Poulsen, H. R. Andersen, P. Grandjean, Environ. Health-UK, 7, 1 (2008).
  11. J. Gao, G. Zhao, W. Shi, D. Li. Chemosphere 75, 519 (2009).
  12. E. Brillas, B. Boye, I. Sires, J. A. Garrido, R. M. Rodrıguez, C. Arias, P. L. Cabot, C. Comninellis, Electrochim. Acta 49, 4487 (2004).
  13. B. Boye, M.M. Dieng, E. Brillas. Environ. Sci. Technol. 36(13), 3030 (2002).
  14. G. L. Sinton, L.T. Fan, L. E. Erickson, M. Lee, Enzyme Micro. Technol. 8, 395 (1986).
  15. T. P. Ryan, J. A. Bumpus, Appl Microbiol Biotechnol. 31, 302 (1989).
  16. J. S. Yadav, C. A. Reddy, Appl Environ Microbiol. 59, 2904 (1993).
  17. E. Brillas, M. Á. Baños, M. Skoumal, P. L. Cabot, J. A. Garrido, R. M. Rodríguez. Chemosphere 68, 199 (2007).
  18. L. J. Audus (Ed.), Physiology and Biochemistry of Herbicides, Academic Press, London, (1964).
  19. A. S. Crafts, Chemistry and Mode of Action of Herbicides, Ed. Interscience, London, 1961.
  20. A. S. Crafts and W.W. Robins, Weed Control, Ed. McGraw-Hill, London, 1962.
  21. A. W. Galston, P. J. Davies, R. L. Satter, The Life of the Green Plant, Ed. Prentice-Hall, New Jersey, 1980.
  22. G. S. Gruzdyev, V. A. Zinchenko, V. A. Kalinin, R. I. Slovtsov, The Chemical Protection of Plants, Ed. Mir Pub., Moscow, 1983.
  23. X. Ren, Y. Sun, X. Fu, L. Zhu, Z. Cui. J. Mol. Model. 19, 2249 (2013).
  24. D. Vione, M. Minella, C. Minero Phototransformation of pesticides in the Environment. In High Performance Liquid Chromatography in Pesticide Residue Analysis, edited by T. Tuzimski, J. Sherma. Editorial. CRC Press, Taylor and Francis Group. 2015.
  25. J. L. Gázquez, J. Mex. Chem. Soc. 52, 3 (2008).
  26. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003).
  27. H. Chermette, J. Comput. Chem. 20, 129 (1999).
  28. P. W. Ayers, J. S. M. Anderson, L. J. Bartolotti, Int. J. Quantum Chem. 101, 520 (2005).
  29. P. K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev. 106, 2065 (2006).
  30. P. A. Johnson, L. J. P. Bartolotti, W. Ayers, T. Fievez, P. Geerlings, Modern Charge Density Analysis, ed(s) Gatti C and Macchi P Springer New York: 2012.
  31. S. B. Liu, Acta Phys. Chim. Sin. 25, 590 (2009).
  32. R.G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999).
  33. J. L. G. Gazquez, A. Cedillo, A. Vela, J. Phys. Chem. A 111, 1966 (2007).
  34. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press , New York, 1989.
  35. S.B. Liu, in Chemical reactivity theory: A density functional view, edited by P.K. Chattaraj, Taylor and Francis, Boca Raton, 2009.
  36. J. L. Gazquez, F. Mendez, J. Phys. Chem. 98, 4591 (1994).
  37. F. Mendez, J. L. Gazquez, J. Am. Chem. Soc. 116, 9298 (1994).
  38. R.G. Parr, W. Yang, J. Am. Chem. Soc. 106, 4048 (1984).
  39. Y. Zhao, D.G. Truhlar. J. Phys. Chem. A 108, 6908 (2004).
  40. Q. Zhang, W. Yu, R. Zhang, Q. Zhou, R. Gao, W. Wang. Environ Sci Technol. 44, 3395 (2010).
  41. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72, 650 (1980).
  42. A. D. McLean, G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).
  43. S. Miertus, J. Tomasi, J. Chem. Phys. 65, 239 (1982).
  44. S. Miertus, E. Scrocco, J. Tomasi J. Chem. Phys. 55, 117 (1981).
  45. M. Head-Gordon, J.A. Pople, M. Frisch, J. Chem. Phys. Lett. 153, 503 (1988).
  46. Gaussian 09, Revision A.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).
  47. Gaussview Rev. 3.09, Windows version. Gaussian Inc., Pittsburgh, (2003).
  48. J.J.P. Stewart, J. Mol. Modeling 19, 1 (2013).
  49. MOPAC2016, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA HTTP://OpenMOPAC.net (2016).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP