JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 3 (2017): Journal of the Chilean Chemical Society
Original Research Papers

ROLE OF NANOPARTICLE SIZE ON PERFORMANCE OF PARTIAL OXIDATION OF BUTANE PROCESS TO SYNGAS

Mahdi Fakoori
Department of Process, South Pars Gas Complex
Bizhan Honarvar
Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University
Published September 2, 2017
Keywords
  • Partial oxidation,
  • butane,
  • Co/γ-Al2O3,
  • particle size,
  • selectivity
How to Cite
Fakoori, M., & Honarvar, B. (2017). ROLE OF NANOPARTICLE SIZE ON PERFORMANCE OF PARTIAL OXIDATION OF BUTANE PROCESS TO SYNGAS. Journal of the Chilean Chemical Society, 62(3). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/320

Abstract

In this study, performance of nano structure Co/γ-Al2O3 catalysts in partial oxidation of butane was investigated. The catalysts were produced through chemical reduction and incipient wetness impregnation methods. Prepared catalysts were characterized with X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), N2 adsorption/desorption (BET), temperature programmed reduction (TPR) and thermal gravity analysis (TGA).The characterization results confirmed the uniform dispersion of Co nanoparticles over γ-Al2O3 by using chemical reduction. Butane conversion, H2 and CO selectivities increased by decreasing of Co particle size due to higher dispersion and reducibility. The optimum value of H2/CO ratio of 2 obtained from chemical reduction technique. The results showed that the stability of catalyst produced by chemical reduction method was higher than incipient wetness impregnation ones.

References

  1. A.Mosayebi,R.Abedini, Partial oxidation of butane to syngas using nanostructureNi/zeolite catalysts, J. Ind. Eng. Chem. 20, 1542,1548, (2014).
  2. A.S. Larimi, S.M.Alavi, Ceria-Zirconia supported Ni catalysts for partial oxidation of methane to synthesis gas, Fuel. 102, 366,371, (2012).
  3. E. Iglesia, S.L. Soled, R.A. Fiato, Dispersion, support, and bimetallic effects in Fischer-Tropsch synthesis on cobalt catalysts, Stu. Sur. Sci. catal. 81,433,442(1994).
  4. J.Y. Park, Y.J.Lee, P.R.karandikar, Fischer-Tropsch catalysyts deposited with size controlled Co3O4 nanocrystals: effect of partivle size on catalytic activity and stability, Appl. Catal. A. Gen. 411 ,23,28, (2012).
  5. S.Sun, N.Tesubaki, K. Fugimito, Novel utilization of mesoporous molecular sieves as supports of cobalt catalysts in Fischer–Tropsch synthesis, Appl.Catal.A.Gen. 202, 121,131, (2000).
  6. G.Leendert Bezemer, J.H.Bitter, H.P.Kuipers, H.Oosterbeek, J.E.Holewijin, Cobalt Particle Size Effects in the Fischer-Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts, J. Am. Chem. Soc. 128, 3956,3963, (2006).
  7. A. Haghtalab, A. Mosayebi, Co@Ru nanoparticle with core-shell structure supported over Al2O3 for Fischer–Tropsch synthesis, Int. J. Hydrogen Energy. 39 ,18882,18893, (2014).
  8. Y.P. Li, T.J. Wang, C.Z. Wua, X.X. Qin, N. Tsubaki, Effect of Ru addition to catalysts on Fischer–Tropsch synthesis of gasoline-range hydrocarbons, Catal.Commun. 10 , 1868,1874, (2009).
  9. A. Mosayebi, A. Haghtalab, The comprehensive kinetic modeling of the Fischer–Tropsch synthesis over Co@Ru/c-Al2O3 core-shell structure catalyst, Chem. Eng. J. 259, 191,204, (2015).
  10. A.Mosayebi,M.A. Mehrpouya, R. Abedini,The development of new comprehensive kinetic modeling for Fischer–Tropsch synthesis process over Co-Ru/Al2O3 nano-catalyst in a fixed-bed reactor, Chem.Eng.J. 286 ,416,426, (2016).
  11. M.Trepanier, A.K.Dalai, N.Abtazaglou, Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of particle size on reducibility, activity and selectivity in Fischer–Tropsch reactions, Appl. Catal. A: Gen. 374, 79,86, (2010).
  12. R. Sabori, S. Sharifnia, M.E. Alami, M.R. Panahi,Promotion of Metallic Catalysts by Metal Oxide Powders in Partial Oxidation of Methane, J. Taiwan. Ins. Chem. Eng. 43, 153,158, (2012).
  13. A.C.Ferreira,A.M.Ferraria, A.M.Botelho, A.P.Gonc¸ M.Correia,Partial oxidation of methane over bimetallic nickel–lanthanide oxides. J. Alloys. Compd. 489 ,316,322, (2010).
  14. Y.Wei, H.Wang, K. Li, Ce–Fe–O mixed oxide as oxygen carrier for the directpartial oxidation of methane to syngas. J. Rare. Earths. 28 ,560,567, (2010).
  15. J.Zhang, N.Zhao, W.Wei, Y.Sun, Partial oxidation of methane over Ni/ Mg/Al/Lamixed oxides prepared from layered double hydrotalcites, Int. J. Hydrogen.Energ. 35,11776,1174, (2010).
  16. S. Liu, L. Xu, S.J. Xie, Q.X. Wang, Partial oxidation of butane to syngas over nickel supported catalysts modified by alkali metal oxide and rare-earth metal oxide, Chin. Chem. Lett. 12,43, (2001).
  17. J. Rickenbach, M. Nabavi, I. Zinovik, N.N. Hotz, D. Poulikakos, A detailed surface reaction model for syngas production from butane over Rhodium catalyst. Int. J. Hydrogen Energy 36 ,12238, (2011).
  18. N. Hotz, M.J. Stutz, S. Loher, W.J. Stark, D. Poulikakos, Syngas production from butane using a flame-made Rh/Ce0.5Zr0.5o2 catalyst. Appl. Catal. B. 73,336. (2007).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP