JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 4 (2017): Journal of the Chilean Chemical Society
Original Research Papers

SYNTHESIS AND CHARACTERIZATIONS OF METALLIC NANOPARTICLES IN CHITOSAN BY CHEMICAL REDUCTION

Yasna León
Departamento de Ciencias Básicas, Universidad Santo Tomás
Galo Cárdenas
Centro de Biomateriales y Nanotecnología
Mauricio Arias
Departamento de Ciencias Básicas, Universidad Santo Tomás
Published February 9, 2018
Keywords
  • Nanoparticles,
  • Chitosan,
  • TEM
How to Cite
León, Y., Cárdenas, G., & Arias, M. (2018). SYNTHESIS AND CHARACTERIZATIONS OF METALLIC NANOPARTICLES IN CHITOSAN BY CHEMICAL REDUCTION. Journal of the Chilean Chemical Society, 62(4). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/474

Abstract

One of the applications of chitosan is based on its ability to stabilized metallic nanoparticles with minimum chitosan metal molar ratio.

This work describes the synthesis and characterization of Ag, Au, Pt, and Cu nanoparticles stabilized by chitosan through chemical reduction of metallic salts by sodium borohydride (NaBH4).

The properties of bionanocomposites were studied in terms of their surface plasmon resonance, crystalline structure, average diameter size, particle distributions and functional groups. The samples were characterized by TEM, electron diffraction, UV-Visible and FTIR. The stability of the colloids at room temperature were also measured. A high stability for the colloidal dispersion with chitosan can be observed (> three months). We found that TEM studies show a size distribution between 6 and 10 nm, depending on metals and chitosan metal relation. Electron diffraction analysis for the metallic nanoparticles shows the presence of Ag, Au, Pt and Cu. The FT-IR exhibit the presence of the chitosan in the stabilisation of metallic nanoparticles.

References

  1. K. Sannegowda, A. Shambhulinga, N. Manjunatha, M. Imadadulla, M. Hojamberdiev, Dyes and Pigments, 120, 155, (2015).
  2. X. Liu, H. Cheng, P. Cui, Applied Surface Science. 292, 695, (2014).
  3. N. Misra, M. Rapolu, S. Rao, L. Varshney, V. Kumar, Optics & Laser Technology. 79, 24, (2016).
  4. A. Akbari-Sharbaf, S. Ezugwu, M. Shafiq, M. Cottam, G. Fanchini, Carbon. 95, 199 (2015).
  5. G. Cárdenas, Y. León, Y. Moreno, O. Peña, Colloid. Polim. Sci. 284, 644, (2006).
  6. C. Chin Yu, Y. Chuan Liu, K. Hsuan Yang, C. Ching Li, C. CaiWang, Materials Chemistry and Physics. 125, 109, (2011).
  7. S. Boufi, M. Rei Vilar, A. Ferraria, A. Botelho do Rego, Colloids and Surface A: physicochem. Eng. Aspects. 439, 151, (2013).
  8. Y.León, I. Brito, G. Cárdenas, O. Godoy, J. Chil. Chem. Soc. 54, 1, 51, (2009).
  9. T.C. Rocha, H. Winnischofer, E. Westphal, D. Zanchet, J. Phys. Chem. C. 111, 3901, (2007).
  10. D. Özhava, N.Z. Kılıçaslan, S. Özkar, Applied Catalysis B: Environmental, 162, 573, (2015).
  11. L. Hu, A. Pfirman, G. Chumanov, Applied Surface Science, 357, 1587, (2015).
  12. X. Yan, H. Liu, K. Liew, J. Mater. Chem. 11, 3387, (2001).
  13. T. Teranishi, M. Miyake, Chem. Mater. 10, 594, (1998).
  14. P. Geetha, M.S. Latha, S. Pillai, B. Deepa, K. S. Kumar, M. Koshy, J. Molecular Structure, 1105, 54, (2016).
  15. H. Huang, X.Yang, Colloid Surf. A: Physicochemistry Engineering Aspects. 226, 77, (2003).
  16. D. Wei, W. Qian, Colloid Surf. B: Biointerfaces. 62, 136, (2008).
  17. P. Kumar, J. Dutta, V. Tripathi, J. Scientific and Industrial Research. 63, 20, (2004).
  18. H. Yi, L. Wu, W. Bentley, R. Ghodssi, G. Rubloff, J. Cunver, G. Payne, Biomacromolecules. 6, 288, (2005).
  19. G. Cárdenas, E. Taboada, G. Cabrera, J. Chil. Chem. Soc. 48, 1, 7, (2003).
  20. G. Cárdenas, J. Díaz, M. Meléndrez, C. Cruzat, A. García, Polym. Bull. 62, 511, (2009).
  21. A. Tiwari, A. Mishra, A. Kuvarega, B. Mamba. Carbohydrate Polymers. 92, 1402, (2013).
  22. L. Wu, S. Shafii, M. Nordin, K. Liew, J. Li. Materials Chemistry and Physics. 137, 493, (2012).
  23. G. Cárdenas, J. Díaz, M. Meléndrez, C. Cruzat, O. Peña, Colloid Polym. Sci. 289, 21, (2011).
  24. A. Stevenson, D. Blanco, S. Civit, S. Antoranz, A. iglesias, S. Trigueros, Nanoscale research Letters, 7, 151, (2012).
  25. J. An, Q. Luo, X. Yuan, D. Wang, X. Li, J. Appl. Polym. Sci.120, 3180, (2011).
  26. D. Wei, Y. Ye, X. Jia, C. Yuan, W. Qian, Carbohydrate Research. 345, 74, (2010).
  27. N. Zain, A. Stapley, G. Shama, Carbohydrate Polymers. 112, 195, (2014).
  28. R. Muzzarelli, Carbohydrate Polymers. 84, 54, (2011).
  29. M. Moharram, S. Khalil, H. Sherif, W. Khalil, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 126, 1, (2014).
  30. A. Travan, C. Pelillo, I. Donati, et al, Biomacromolecules, 10, 1429, (2009).
  31. A. Manikandan, M. Sathiyabama, J. Nanomed. Nanotechnol, 6, 1, (2015).
  32. Powder Diffraction File, Inorganic Phases, International Centre for Diffraction data, Pennsylvania, USA. JCPDS 1997.
  33. D. Chunfa; Z. Xianglin; C. Hao; C. Chuanliang, Rare Metal Materials and Engineering. 45, 0261, (2016).
  34. D. Wei, W. Sun, Y. Qian, Carbohydrate Research. 344, 2378, (2009).
  35. J. Creighton, D. Eadon, J. Chem. Soc. Faraday Trans. 87, 3881, (1981).
  36. S. Nergiz, S. Singamaneni, Appl. Mater. Interfaces. 3, 945 (2011).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP