JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 1 (2016): Journal of the Chilean Chemical Society
Original Research Papers

MOLYBDENUM TRIOXIDE THIN FILMS DOPED WITH GOLD NANOPARTICLES GROWN BY A SEQUENTIAL METHODOLOGY: PHOTOCHEMICAL METAL-ORGANIC DEPOSITION (PMOD) AND DC-MAGNETRON SPUTTERING

C. Castillo
Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso
G. Buono-Core
Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso
C. Manzur
Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso
N. Yutronic
Departamento de Química, Facultad de Ciencias, Universidad de Chile
R. Sierpe
Departamento de Química, Facultad de Ciencias, Universidad de Chile
G. Cabello
Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán
B. Chornik
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile
Published December 10, 2015
Keywords
  • A. oxides,
  • A. thin films,
  • A. nanostructures,
  • B. sputtering,
  • C. x-ray diffraction,
  • C. photoelectron spectroscopy
  • ...More
    Less
How to Cite
Castillo, C., Buono-Core, G., Manzur, C., Yutronic, N., Sierpe, R., Cabello, G., & Chornik, B. (2015). MOLYBDENUM TRIOXIDE THIN FILMS DOPED WITH GOLD NANOPARTICLES GROWN BY A SEQUENTIAL METHODOLOGY: PHOTOCHEMICAL METAL-ORGANIC DEPOSITION (PMOD) AND DC-MAGNETRON SPUTTERING. Journal of the Chilean Chemical Society, 61(1). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/50

Abstract

Gold nanoparticles (AuNPs) were deposited by DC-magnetron sputtering onto molybdenum trioxide (MoO3) thin films grown by Photochemical Metal- Organic Deposition (PMOD) on Si(100) and borosilicate glass substrates. The chemical, optical and morphology properties of the films were studied by UV/ Vis Spectroscopy, Scanning Electron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), and X-Ray Diffraction (XRD). SEM revealed that AuNPs formed after 5 s of sputtering. AuNPs are spherical and have both an average diameter of 18 nm and a relatively narrow size distribution. As the deposition time increases, larger structures are formed by an aggregation of AuNPs. XPS studies of the AuNP/MoO3 films on Si(100) showed the presence of Mo(VI) and Mo(V), which indicated that the films were primarily non-stoichiometric molybdenum oxides. The occurrence of oxygen vacancies in the substrate play an important role to stabilize the AuNPs.

References

  1. -M. Daniel, D. Astruc, Chem. Rev. 104 293-346 (2004).
  2. -P. Zhao, N. Li, D. Astruc, Coord. Chem. Rev. 257 638-665 (2013).
  3. -M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.Liz-Marz, Chem. Soc. Rev. 37 1783-1791 (2008).
  4. -Juan J. Giner-Casares, Luis M. Liz-Marzán, Nano Today 9 365-377 (2014).
  5. -A.K. Khan, R. Rashid, G. Murtaza, A. Zahra, Trop. J. Pharm. Res. 13 1169-1177 (2014).
  6. -A. Liu, B. Ye, Clin. Lab. 59 23-36 (2013).
  7. -R. Andres, T. Bein, M. Dorogi, S. Feng, J. Henderson, C. Kubiak, W. Mahoney, R. Osifchin, R. Reifenberge, Science 272 1323 (1996).
  8. -T. Okamoto, I. Yamaguchi, J. Phys. Chem. B 107 10321-10324 (2003).
  9. -I. Sosa, C. Noguez, R. Barrera, J. Phys. Chem. B 107 6269-6275 (2003).
  10. -J. Novak, L. Brousseau, F. Vance, R. Johnson, B. Lemon, J. Hupp, D. Feldheim, J. Am. Chem. Soc. 122 12029-12030 (2000).
  11. -M. Ando, T. Kobayashi, S. Iijima, M. Haruta, J. Mater. Chem. 7 1779– 1783 (1997).
  12. -M. Ando, T. Kobayashi, S. Iijima, M. Haruta, Sens. Actuators B 96 589- 595 (2003).
  13. -M. Ahmad, A. Sadek, M. Yaacob, D. Anderson, G. Matthews, V. Golovko, W. Wlodarski, Sens. Actuators B 179 125-130 (2013).
  14. -T. Takei, K. Akita, I. Nakamura, T. Fujitani, M. Okumura, K. Okazaki, J.H. Huang, T. Ishida, M. Haruta, Adv. Catal. 55 1-126 (2012).
  15. -C. Della Pina, E. Falletta, L. Prati, M. Rossi, Chem. Soc. Rev. 37 2077- 2095 (2008).
  16. -A. Corma, H. Garcia, Chem. Soc. Rev. 37 2096-2126 (2008).
  17. -Y. Zhang, X.J. Cui, F. Shi, Y. Deng, Chem. Rev. 112 2467-2505 (2012).
  18. -M. Stratakis, H. Garcia, Chem. Rev. 112 4469-4506 (2012).
  19. -S.E. Davis, M.S. Ide, R.J. Davis, Green Chem. 15 17-45 (2013).
  20. -Y. Mikami, A. Dhakshinamoorthy, M. Alvaro, H. García, Catal. Sci. Technol. 3 58-69 (2013).
  21. -D.V. Leff, P.C. Ohara, J.R. Heath, W.M. Gelbart, J. Phys. Chem. 99 7036-7041 (1995).
  22. -M. Kaushik, Z.L. Wang, P. Tarasankar, J. Photoch. Photobio. A 140 75 (2001).
  23. -T.K. Sau, P. Anjali, N.R. Jana, Z.L. Wang, P. Tarasankar, J. Nanopart. Res. 3 257-261 (2001).
  24. -N. Long, L. Vu, C. Kiem, S. Doanh, C. Nguyet, P. Hang, N. Thien, L. Quynh, J. Phys. Conf. Ser. 187 012026 (2009).
  25. -O. Kenji, M. Yoshiteru, T.A. Yamamoto, M. Yasuaki, N.Yoshio, Mater. Lett. 61 3429 (2007).
  26. -L. Cuncheng, C Weiping, K. Caixia, F. Ganhua, Z. Lide, Mater. Lett. 58 196 (2003).
  27. -W. Liping, M. Wei, N. Dandan, D. Junwei, W. Ying, T. Yifeng, Electrochem. Commun. 10 673 (2008).
  28. -L. Barrientos, N. Yutronic, F. del Monte, M. Gutiérrez, P. Jara, New. J. Chem. 31 1400-1402 (2007).
  29. -G. Veith, A. Lupini, S. Pennycook, G. Ownby, N. Dudney, J. Catalysis 231 151-158 (2005).
  30. -P. Kelly, R. Armell, Vacuum 56(3) 159-172 (2000).
  31. -D.B. Akolekar, K. Bhargava, G. Foran, M. Takahashi, J. Mol. Catal. A-Chem. 238 78-87 (2005).
  32. -M. Baron, O. Bondarchuk, D. Stacchiola, S. Shaikhutdinov, H.-J. Freund, J. Phys. Chem. C, 113, 6042–6049 (2009).
  33. -S. Lee, C. Fan, T. Wu, S. L. Anderson, Surface Science 578 5–19 (2005).
  34. -Á. Kukovecz, G. Pótári, A. Oszkó, Z. Kónya, A. Erdőhelyi, J. Kiss, Surface Science 605 1048–1055 (2011).
  35. -P. Pusztai, R. Puskás, E. Varga, A. Erdohelyi, A. Kukovecz, Z. Konya, J. Kiss, Phys. Chem. Chem. Phys. 16 26786 (2014).
  36. -M. Haruta, Chem. Record 3 75 (2003).
  37. -M. Okumura, T. Akita, M. Haruta, X Wang, O. Kajikawa, O. Okada, Appl. Catal. B: Environmental 41- 43 (2003).
  38. -K. Saha, S.S. Agasti, C. Kim, X. Li , M. Vincent, Chem. Rev. 112(5) 2739-2779 (2012).
  39. -T. He, Y. Ma, Y. Cao, J. Peng, X. Zhang, W. Yang, J. Yao, Langmuir 17: 8024-8027 (2001).
  40. -G.E. Buono-Core, A. Klahn, C. Castillo, E. Muñoz, C. Manzur, G. Cabello, B. Chornik, J. Non-Cryst. Solids 387 21-27 (2014).
  41. -D.A. Shirley, Phys. Rev. B 5 4709-4714 (1972).
  42. -Y. Hatakeyama, K. Onishi, K. Nishikawa, RSC Advances 1 1815-1821 (2011).
  43. -K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, Nano Lett. 3 1087-1090 (2003).
  44. -S. Ghosh, T. Pal, Chem. Rev. 107 4797-4862 (2007).
  45. -R.G. Palgrave, I.P. Parkin, Chem. Mater. 19 4639-4647 (2007).
  46. -H. Wei, J. Li, J. Zheng, H. Su, X. Wang, Inorg. Chim. Acta 427 33-40 (2015).
  47. -M. Casaletto, A. Longo, A. Martorana, A. Prestianni, A. Venezia, Surf. Interface Anal. 38 215-218 (2006).
  48. -L. Ono, B. Roldan-Cuenya, J. Phys. Chem. C 112 4676-4686 (2008).
  49. -N. Turner, A. Single, Surf. Interface Anal. 15 215-222 (1990).
  50. -S. Sunu, E. Prabhu, V. Jayaraman, K. Gnanasekar, T. Seshagiri, T. Gnanasekaram, Sens. Actuators B 101 (2004) 161-174.
  51. -O. Hussain, K. Rao, Mater. Chem. Phys. 80 638-646 (2003).
  52. -R. Cardenas, J. Torres, J. Alfonso, Thin Solid Films 478 146-151 (2005).
  53. -J. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2 1319-1324 (2000).
  54. -A. Bouzidi, N. Benramdane, H. Tabet-Derraz, C. Mathieu, B. Khelifa, R. Desfeux, Mater. Sci. Eng. B 97 5-8 (2003).
  55. -G.E. Buono-Core, G. Cabello, A. Klahn, A. Lucero, M.V. Nuñez, B. Torrejón, C. Castillo, Polyhedron 29 1551-1554 (2010).
  56. -T. Chiang, H. Yeh, J. Alloys Compd. 585 535-541 (2014).
  57. -M. Dhanasankar, K. Purushothaman, G. Muralidharan, Appl. Surf. Sci. 257 2074-2079 (2011).
  58. -Y. Chen, X. Gu, C. Nie, Z. Jiang, Z. Xie, Chem. Commun. 4181-4183 (2005).
  59. -D. Kaczmarek, J. Domaradzki, E. Prociow, T. Berlicki, K. Prociow, Opt. Mater. 31 1337-1339 (2009).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP