JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 63 No 2 (2018): Journal of the Chilean Chemical Society
Original Research Papers

DETERMINATION OF PESTICIDES IN RIVER SURFACE WATERS OF CENTRAL CHILE USING SPE-GC-MS MULTI-RESIDUE METHOD

María José Climent
Environmental Sciences Faculty & EULA Center, Universidad de Concepción Center for Water Resources for Agriculture and Mining (CRHIAM), Universidad de Concepción
María Jesús Sánchez-Martín
Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC
María Sonia Rodríguez-Cruz
Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC
Pablo Pedreros
Environmental Sciences Faculty & EULA Center, Universidad de Concepción Center for Water Resources for Agriculture and Mining (CRHIAM), Universidad de Concepción
Roberto Urrutia
Environmental Sciences Faculty & EULA Center, Universidad de Concepción Center for Water Resources for Agriculture and Mining (CRHIAM), Universidad de Concepción
Eliseo Herrero-Hernández
Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC
Published June 25, 2018
Keywords
  • agricultural activity,
  • degradation products,
  • pesticides,
  • water pollution
How to Cite
Climent, M. J., Sánchez-Martín, M. J., Rodríguez-Cruz, M. S., Pedreros, P., Urrutia, R., & Herrero-Hernández, E. (2018). DETERMINATION OF PESTICIDES IN RIVER SURFACE WATERS OF CENTRAL CHILE USING SPE-GC-MS MULTI-RESIDUE METHOD. Journal of the Chilean Chemical Society, 63(2). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/689

Abstract

In areas with agricultural activity, the excessive use of pesticides can contaminate water resources. That is why a multi-residue method based on solid-phase extraction (SPE) and gas chromatography analysis coupled to mass spectrometry (GS-MS) was used to determine eleven pesticides and five degradation products in surface water of Central Chile. The parameters that can affect the efficiency of the SPE process were optimized considering the information available in bibliography. As in other studies, the best results were obtained when 500 mL of water was pre-concentrated using Oasis HLB polymer cartridges and acetone and acetonitrile were used as solvents for the elution. To ensure good quantification, matrix-matched standards were used, providing good linearity in the studied concentration range (0.10-1.5 μg L-1), with recovery percentages > 60%, precisions < 19% and quantification limits < 0.1 μg L-1. The surface water samples were collected at the end of summer and winter seasons, considering rivers, creeks and irrigation canals of Cachapoal River basin. A percentage > 87% of the pesticides analyzed in this research were detected in more than one sampled site in both seasons. The most ubiquitous compounds were desethylterbuthylazine (DET), pyrimethanil, cyprodinil and diazinon, and the compounds detected in highest concentration were simazine and degradation products derived from triazines. Las Cabras and Tahuilla irrigation canals presented the highest concentrations of pesticides. Significant differences were found in the total concentration of pesticides for sites sampled at the end of the summer and winter season.

References

  1. Zhang, Y. Q.; Johnson, A. C.; Su, C.; Zhang, M.; Jurgens, M. D.; Shi, Y. J.; Lu, Y. L., Which persistent organic pollutants in the rivers of the Bohai Region of China represent the greatest risk to the local ecosystem? Chemosphere. 178, 11-18, (2017).
  2. Xiao, P. F.; Liu, F. G.; Liu, Y. H.; Yao, S. M.; Zhu, G. N., Effects of Pesticide Mixtures on Zooplankton Assemblages in Aquatic Microcosms Simulating Rice Paddy Fields. Bulletin of environmental contamination and toxicology. 99, 1, 27-32, (2017).
  3. Coscolla, C.; Lopez, A.; Yahyaoui, A.; Colin, P.; Robin, C.; Poinsignon, Q.; Yusa, V., Human exposure and risk assessment to airborne pesticides in a rural French community. Sci. Total Environ., 584, 856-868, (2017).
  4. Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal- Gándara, J.; Mejuto, J.-C.; García-Río, L., The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment. 123, 4, 247-260, (2008).
  5. Gavrilescu, M., Fate of Pesticides in the Environment and its Bioremediation. Engineering in Life Sciences. 5, 6, 497-526, (2005).
  6. Qian, Y.; Matsumoto, H.; Liu, X. Y.; Li, S. Y.; Liang, X.; Liu, Y. N.; Zhu, G. N.; Wang, M. C., Dissipation, occurrence and risk assessment of a phenyturea herbicide tebuthiuron in sugarcane and aquatic ecosystems in South China. Environ. Pollut., 227, 389-396, (2017).
  7. Rousis, N. I.; Bade, R.; Bijlsma, L.; Zuccato, E.; Sancho, J. V.; Hernandez, F.; Castiglioni, S., Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environ. Res., 156, 31-38, (2017).
  8. Herrero-Hernández, E.; Rodríguez-Cruz, M. S.; Pose-Juan, E.; Sánchez- González, S.; Andrades, M. S.; Sánchez-Martín, M. J., Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Sci. Total Environ., 609, 161-171, (2017).
  9. Stayner, L. T.; Almberg, K.; Jones, R.; Graber, J.; Pedersen, M.; Turyk, M., Atrazine and nitrate in drinking water and the risk of preterm delivery and low birth weight in four Midwestern states. Environ. Res., 152, 294- 303, (2017).
  10. Union, E., Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/ EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. In Official Journal of the European Union, Union, E., Ed. 2008; Vol. 51, pp 84-97.
  11. Bach, M.; Diesner, M.; Grossmann, D.; Guerniche, D.; Hommen, U.; Klein, M.; Kubiak, R.; Muller, A.; Preuss, T. G.; Priegnitz, J.; Reichenberger, S.; Thomas, K.; Trapp, M., Pesticide exposure assessment for surface waters in the EU. Part 2: Determination of statistically based run-off and drainage scenarios for Germany. Pest Management Science. 73, 5, 852-861, (2017).
  12. Ferreira, A. d. S. G.; da Silva, H. C. M. P.; Rodrigues, H. O. S.; Silva, M.; de Albuquerque Junior, E. C., Occurrence and spatial-temporal distribution of herbicide residues in the Ipojuca River sub-basin, Pernambuco, Brazil. Revista Brasileira De Engenharia Agricola E Ambiental. 20, 12, 1124- 1128, (2016).
  13. De Geronimo, E.; Aparicio, V. C.; Barbaro, S.; Portocarrero, R.; Jaime, S.; Costa, J. L., Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere. 107, 423-431, (2014).
  14. Retamal, M.; Costa, C.; Suarez, J. M.; Richter, P., Multi-determination of organic pollutants in water by gas chromatography coupled to triple quadrupole mass spectrometry. Int. J. Environ. Anal. Chem., 93, 1, 93-107, (2013).
  15. Montory, M.; Ferrer, J.; Rivera, D.; Villouta, M. V.; Grimalt, J. O., First report on organochlorine pesticides in water in a highly productive agro-industrial basin of the Central Valley, Chile. Chemosphere. 174, 148-156, (2017).
  16. Normalización, I. N. d., Norma Chilena de Agua Potable, Parte 1: Requisitos. NCh 409/1. Of 1984. Normalización, I. N. d., Ed. 1984; pp 1-11.
  17. Buszewski, B.; Szultka, M., Past, Present, and Future of Solid Phase Extraction: A Review. Crit. Rev. Anal. Chem., 42, 3, 198-213, (2012).
  18. Tankiewicz, M.; Fenik, J.; Biziuk, M., Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: A review. Talanta. 86, 8-22, (2011).
  19. Bonansea, R. I.; Ame, M. V.; Wunderlin, D. A., Determination of priority pesticides in water samples combining SPE and SPME coupled to GC-MS. A case study: Suquia River basin (Argentina). Chemosphere. 90, 6, 1860- 1869, (2013).
  20. Ganadero, S. A. y., Informe de Venta de Plaguicidas de Uso Agrícola en Chile. Servicio Agrícola y Ganadero, D. P. A. y. F., Subdepartamento de Viñas y Vinos, Inocuidad y Biotecnología, Sección Inocuidad., Ed. Servicio Agrícola y Ganadero: 2012; pp 1-113.
  21. Herrero-Hernández, E.; Pose-Juan, E.; Álvarez-Martín, A.; Andrades, M. S.; Rodríguez-Cruz, M. S.; Sánchez-Martín, M. J., Pesticides and degradation products in groundwaters from a vineyard region: Optimization of a multiresidue method based on SPE and GC-MS. J. Sep. Sci., 35, 24, 3492-3500, (2012).
  22. Herrero-Hernandez, E.; Andrades, M. S.; Alvarez-Martin, A.; Pose- Juan, E.; Rodriguez-Cruz, M. S.; Sanchez-Martin, M. J., Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region. J. Hydrol., 486, 234-245, (2013).
  23. Lewis, K. A.; Tzilivakis, J.; Warner, D. J.; Green, A., An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal. 22, 4, 1050-1064, (2016).
  24. CIREN, Catastro Frutícola. Principales Resultados, Región del Libertador General Bernardo O’Higgins, Julio 2015. Oficina de Estudios y Políticas Agrarias, O. C. d. I. d. R. N., CIREN. Chile, Ed. 2015.
  25. Dores, E.; Carbo, L.; Ribeiro, M.; M De-Lamonica-Freire, E., Pesticide Levels in Ground and Surface Waters of Primavera do Leste Region, Mato Grosso, Brazil. 2008; Vol. 46, p 585-90.
  26. Reilly, T. J.; Smalling, K. L.; Orlando, J. L.; Kuivila, K. M., Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere. 89, 3, 228-234, (2012).
  27. Pose-Juan, E.; Sánchez-Martín, M. J.; Andrades, M. S.; Rodríguez- Cruz, M. S.; Herrero-Hernández, E., Pesticide residues in vineyard soils from Spain: Spatial and temporal distributions. Sci. Total Environ., 514, Supplement C, 351-358, (2015).
  28. Herrero-Hernández, E.; Pose-Juan, E.; Sánchez-Martín, M. J.; Andrades, M. S.; Rodríguez-Cruz, M. S., Intra-annual trends of fungicide residues in waters from vineyard areas in La Rioja region of northern Spain. Environ. Sci. Pollut. Res., 23, 22, 22924-22936, (2016).
  29. Gregoire, C.; Payraudeau, S.; Domange, N., Use and fate of 17 pesticides applied on a vineyard catchment. Int. J. Environ. Anal. Chem., 90, 3-6, 406-420, (2010).
  30. Wightwick, A. M.; Bui, A. D.; Zhang, P.; Rose, G.; Allinson, M.; Myers, J. H.; Reichman, S. M.; Menzies, N. W.; Pettigrove, V.; Allinson, G., Environmental Fate of Fungicides in Surface Waters of a Horticultural- Production Catchment in Southeastern Australia. Arch. Environ. Contam. Toxicol., 62, 3, 380-390, (2012).
  31. Cruzeiro, C.; Pardal, M. Â.; Rocha, E.; Rocha, M. J., Occurrence and seasonal loads of pesticides in surface water and suspended particulate matter from a wetland of worldwide interest—the Ria Formosa Lagoon, Portugal. Environ. Monit. Assess., 187, 11, 669, (2015).
  32. Papadakis, E.-N.; Tsaboula, A.; Kotopoulou, A.; Kintzikoglou, K.; Vryzas, Z.; Papadopoulou-Mourkidou, E., Pesticides in the surface waters of Lake Vistonis Basin, Greece: Occurrence and environmental risk assessment. Sci. Total Environ., 536, Supplement C, 793-802, (2015).
  33. Ippolito, A.; Kattwinkel, M.; Rasmussen, J. J.; Schäfer, R. B.; Fornaroli, R.; Liess, M., Modeling global distribution of agricultural insecticides in surface waters. Environ. Pollut., 198, Supplement C, 54-60, (2015).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP