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ABSTRACT 

Although pharmaceutical compounds such as antibiotics have been of great help to animals and humans, the excessive use of them have become a global problem 

due to the resistance of pathogens to these drugs, for this reason a series of methods have been reported that we will see below that allow to remove efficiently, 

economically, and environmentally friendly compounds such as antibiotics. 

The aim of this overview is the removal of amoxicillin via different methods, emphasizing removal by biopolymers and its derivatives. 
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1. INTRODUCTION 

A wide variety of organic compounds that we currently know are used in 

different areas of the work where pharmaceutical products are one of the most 

used compounds worldwide [1-3] and their effects have been studied extensively 

[4, 5], so that different authors [6-8] have established that these species are not 

biodegradable and it is estimated that more than 76% of the species that enter the 

different environmental matrices without presenting major Changes. These 

compounds have physiological impacts on different organisms. Specifically, 

antibiotics are the pharmaceutical compounds with the greatest impact on 

different organisms, as well as on the environment. These are detected with high 

frequency in the aqueous medium due to their great use, both in the veterinary, 

human and aquaculture areas, where the elimination is of low or no efficiency in 

wastewater treatment plants [9], finding concentrations ranging from nanograms 

to milligrams per liter, in surface fresh waters they can reach up to 50 g L-1 in the 

African continent, 10 g L-1 in Europe, 15 g L-1 in America and up to 450 g L-1, in 

Asian countries [10]. Although these concentrations do not have a major direct 

impact on humans, they do have an indirect impact, since microorganisms are 

seriously affected by antibiotics at concentrations below 10 g L-1 [11-13]. 

When antibiotics reach the environment, they can cause toxicity [14-16] in 

some organisms, added to this, is one of the biggest problems caused by 

antibiotics that is related to the development of resistant bacteria where every 

year about 33,000 people die [9, 17-19]. The presence of these compounds and 

their metabolites in water bodies are causing different types of human health 

problems due to these bacteria resistant and multidrug-resistant to different 

antibiotics, causing genotoxicity [20], mutagenicity, endocrine disruption, 

different types of cancer and even miscarriages. 

It has been recorded that the consumption of antibiotics ranges between 

100,000 and 200,000 tons per year, however, consumption in humans registered 

an increase of 36% between 2000 and 2010. There are 3 main pathways in which 

antibiotics can enter freshwater bodies [10]: 1) Effluents from wastewater 

treatment plants, 2) chemical manufacturing plants, and 3) animal husbandry and 

aquaculture [21, 22].  With the information given, this article will review general 

aspects regarding antibiotics, resistance to them, effects and different methods of 

removal. 

2. GENERAL ASPECTS ON ANTIBIOTICS 

They are defined as natural, semi-synthetic and/or synthetic compounds with 

antimicrobial activity that can be applied parentally, orally or topically [23]. 

Used in different areas, such as medicine, agriculture and livestock, antibiotics 

are products that are widely used worldwide [24]. Since the discovery of 

penicillin in 1928, the development and discovery of antibiotics was what 

changed modern medicine, extending the half-life of people by 23 years [25]. 

However, since 1950 there has been a gradual decrease in terms of new 

antibiotics and with it the increase in their resistance, due to the wide use of them 

[26, 27]. It should be noted that, in the year 2000, more than 16,000 tons were 

produced in the United States alone, and more than 70% was used in livestock 

[28]; in 2015, countries such as India became the largest consumers of antibiotics 

[29]. While by 2050, it is estimated that the death of people will exceed 10 

million a year from drug-resistant infections [30-32]. 

2.1 Classification of antibiotics  

Antibiotics, organic compounds that have a series of classifications but where 

the most common is that based on their molecular structures, method of action 

and spectrum of activity [33] (see Table 1). Based on its mechanisms of action, 

inhibition of cell wall synthesis [34], alteration of the cell membrane [31], 

inhibition of protein synthesis [35], inhibition of nucleic acid synthesis, among 

others, [36]. 

 

Table 1. General classification of antibiotics. 

Antibiotic Molecular structure Function Active Ingredient General use Reference 

Aminoglycosides 

 

 

 

 

 

 

 

 

 
 

Inhibition of protein 

synthesis 

Amikacin 

Apramycin 

Dihydrostreptomycin 

Gentamicin 

Kanamycin 

Neomycin 

Sisomicin 

Spectinomycin 

Streptomycin 

Veterinary 

and human 
[37-39] 
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Actinomycines 

 

Inhibition of the 

synthesis of nucleic 

acids 

Actinomycin D Human [40, 41] 

Amino-acid and 

peptide derivates 

 

Inhibition of cell wall 

synthesis 

b-peptides 

Magainins 

D-Cycloserine 

Human [42, 43] 

 

Antibiotic Molecular structure Function Active Ingredient Use Reference 

Anthracyclines 

 

Inhibition of DNA 

and RNA synthesis 

Daunorubicin 

Dexorubicin 

Epirubicin 

Pirirubici 

Valrubicin 

Human [44-47] 

Anthracenones 

 

 

Mithramycin 

Streptozotocin 

Pentostatin 

Human [48-53] 

-Lactams 

 

Inhibition of cell wall 

synthesis 

Amoxicillin 

Ampicillin 

Azlocillin 

Benzylpenicillin 

Carbenicillin 

Cloxacillin 

Cephalexin 

Cephalotin 

Cefazolin 

Ceftiofur 

Cefataxim 

Cefotiam 

Cefquinome 

Dicloxacilin 

Flucloxacillin 

Methicillin 

Mezclocillin 

Nafcillin 

Oxacillin 

Penicillin G 

Piperacillin 

Veterinary 

and human 
[54-60] 
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Diaminopyrimidine 

 

Inhibition of purine 

and pyrimidine 
Trimethoprim Human [61, 62] 

Enediynes 

 

 Calicheamycin Human [63-65] 

Epothilones 

 

Inhibition of 

celldivision 

Epothilone A 

Epothilone B 
Human [66, 67] 

Glycopeptides 

 

Acting on the wall or 

membrane cell $ 

Polymyxins (A & E) 

Teicoplanin 

Vancomycin 

Bleomycin 

Veterinary 

and human 
[68-70] 

Lincosamides 

 

Inhibition of protein 

synthesis by reversibly 

binding to the 50S 

ribosomal subunit 

Clindamycin 

Lincomycin 

Veterinary 

and human 
[71, 72] 

Macrolides 

 

Inhibition of protein 

synthesis by reversibly 

binding to the 50S 

ribosomal subunit 

Azithromycin 

Clarithromycin 

Erythromycin 

Natamycin 

Oleandomycin 

Roxythromycin 

Spiramycin 

Tilmicosin 

Tylosin 

Veterinary, 

human and 

foodadditive 

[71, 73-82] 

Mitosanes 

 

Inhibition of the 

synthesis of nucleic 

acids 

Mitomycin C Human [83, 84] 

Nitrofurans 

 

Inhibition of the 

synthesis of nucleic 

acids 

Furaltadone 

Furazolidona 

Nitrofurantoin 

Nitrofurazone 

Veterinary 

and human 
[85, 86] 
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Nitroimidazole 

 

Inhibition of 

nucleicacidssynthesis 

Metronidazole 

Tinidazole 
Human [87-90] 

Phenicols and 

amphenicols 

 

Inhibition of 

proteinsynthesis 

Chloramphenicol 

Thiamphenicol 
Veterinary [82, 91, 92] 

Phosphonates 

 

Inhibition of cell 

wallsynthesis 

Fosfomycin 

Phosphonothrixin 

Human and 

herbicides 
[93-95] 

Polyetherionophores 

 

 

Laidlomycin 

Lasalocidacid 

Maduramycin 

Monensin 

Narasin 

Salinomycin 

Semduramycin 

Veterinary [96-99] 

Quinolones and 

Fluroroquinolones 

 

Inhibition of DNA 

replication 

Ciprofloxacin 

Enrofloxacin 

Flumequine 

Marbofloxacin 

Nalidixic acid 

Ofloxacin 

Oxolinic acid 

Veterinary 

and human 
[100-104] 

Rifamycins 

 

 

Inhibition of 

nucleicacidssynthesis 

 

Rifampicin 

Rifapentine 

 

Human 

 
[105-107] 

Sulfonamides 

 

 

Inhibition of the folic 

acid synthesis 

 

Mafenide 

Sulfachloropyridazine 

Sulfanilamide 

Sulfadimethoxine 

Sulphamethazine 

Sulfadimidine 

Sulfamethoxazole 

Sulfapyridine 

Sulfathiazole 

Sulfadiazine 

Sulfisoxazole 

Veterinary 

and human 

 

[108-111] 

Tetracyclines 

 

 

Inhibition of 

theproteinsynthesis 

 

Chlortetracycline 

Doxycycline 

Oxytetracycline 

Tetracycline 

 

Veterinary 

and human 

 

[58, 112-116] 
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3. ANTIBIOTIC RESISTANCE  

Although there is a large number of antibiotics with multiple functions, 

microorganisms have presented different mechanisms of action (see Fig. 1) that 

over time have allowed them to generate resistance to them, which can be of 

intrinsic or acquired origin that allows the microorganism the ability to survive 

these drugs [117]. Resistance can be a direct result of competitions between 

microorganisms in the environment but also due to spontaneous mutations that 

give them adaptation [118]. 

The wide range of antibiotics are difficult to fully absorb because the metabolic 

capacity is very limited. That is why the inappropriate use of antimicrobials in 

the area of human health, veterinary, agriculture and aquaculture [119, 120] are 

the main agents of release of this type of drugs to the environment and in 

particular to water. Once antibiotics come into contact with the environment, 

through discharges from hospital facilities, pharmaceutical industry, landfills 

[24, 121], groundwater, urine, feces, etc., they are maintained for a long time 

being very minimal their degradation, where it is established that between 20-

90% [23, 113, 122, 123] of the antibiotics consumed are not metabolized and end 

up being excreted without presenting changes or in forms of derivatives or 

metabolites[124] reaching  directly to the different aquatic systems. Thus, due to 

the (increasing) presence of this type of pollutants in the different aquatic 

systems, it is known as "emerging pollutants" [125]. 

 

Figure 1. Mechanisms of action of some antibiotics. Adapted and modified 

image [124, 126, 127]. 

Emerging pollutants are those that are not monitored on a regular basis or are 

simply not monitored [128] or regulated [129], so that the effects on the 

environment and health are not yet well known. It has been reported that between 

2000 and 2015 the use of antibiotics increased by more than 65% and most have 

the ability to generate strains that are highly resistant in the environment 

[130-133]. This resistance occurs when bacteria change to the point that they can 

reduce or eliminate the effectiveness against the drug [134], and that their 

resistance can occur in several ways: 

a. Appearance of (-lactamases that cleave the ring -lactam of this type of 

antibiotics [135].  

b. The target can be altered so that it can reduce the affinity of the antibiotic 

[136-138]  

c. Mutations that upregulate the expression of transmembrane efflux pumps 

that can reduce the concentration of antibiotics in the bacterial cell. Thus, 

efflux pumps can pump out several different types of antibiotics causing a 

multidrug-resistant phenotype [139, 140]. 

In this particular case, we will detail in a particular antibiotic, reviewing both 

general aspects, such as removal via classic treatments and new methods of 

removal.  

3.1 Amoxicillin (AMX)  

It is a β-lactam antibiotic that belongs to the group of penicillins [141, 142]. 

The basic structure of penicillins, 6-aminopenicillanic acid (see Fig. 2b) consists 

of a ring of thiazolidine fused with a ring of β-lactam with a side chain. 

Amoxicillin (Mw: 365.4 g mol-1) presents in the side chain an amino group (see 

Fig. 2a) that improves stability towards acids, however, it can be part of 

consecutive reactions in neutral or alkaline conditions.  

 

Figure 2. Molecular structure of AMX (a) and 6-aminopenicillanic acid. 

Design of molecules via ChemDraw. Adapted figures [113, 143].  

In human medicine, penicillins are the most commonly consumed antibiotics 

in the European Union, where amoxicillin is consumed in 22 of 30 countries. 

Also in other countries such as India [144] or Brazil [145]. Amoxicillin is very 

active against both Gram positive (Gram+) and Gram-negative (Gram-) 

organisms, including several enteric pathogenic organisms. Amoxicillin is 

widely used in veterinary practice for the treatment of systemic gastrointestinal 

infections. Amoxicillin is a known penicillin that is added to medicated foods at 

a level of 250 to 500 mg kg−1, due to its resistance to gastric juice. In the case of 

humans, after oral intake of amoxicillin, 43 – 75% is excreted and not 

metabolized [142, 146, 147]. Considering that there is a high rate of excretion 

and that its half-life is 9 days, this antibiotic has been found in wastewater [148, 

149] and effluents from wastewater treatment plants and even in surface wáter 

[150].  

3.1.1 Mechanism of action of amoxicillin  

This antibiotic is commonly used due to the broad spectrums in terms of its 

mechanism of action (see Fig. 3) as it stops the proliferation of different bacteria 

[151, 152]. In general, penicillins inhibit a bacterial enzyme called the 

transpeptidase enzyme that is involved in the synthesis of the bacterial cell wall 

[153]. The β-lactam rings are involved in the inhibition mechanism. Penicillin 

covalently binds to the active site of the enzyme, leading to irreversible 

inhibition. In addition to the above, it is important to mention that amoxicillin 

has amphoteric properties [154], a property conferred by its three main functional 

groups, COOH (pKa1= 2.7), NH2 (pKa2 = 7.4) and OH (pKa = 9.6) as shown in 

Figure 4 [155-157]. 

 

Figure 3. Mechanism of action of amoxicillin. 

 

Figure 4. pKa values of the main groups of amoxicillin. Adapted image [155].   

In this way, the molecular structure is affected by the pH changes to which it 

may be subjected. In this way, at pH 10 amoxicillin degradation is recorded in 

time of 24 h at pH 5 there is no further degradation and at pH 1 degradation is 

recorded transforming amoxicillin into amoxicillin acid (see Fig. 5) [158-160]. 

HO
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Thus, at pH values close to neutral, amoxicillin is more stable and has less 

degradation than at acidic or basic pH. However, it should be considered that at 

high temperatures (55ºC) approximately amoxicillin, even if it is in a solution at 

neutral pH, it decomposes [161]. 

 

Figure 5.  Passage from amoxicillin to amoxicilloic acid at acidic pH.  

4. REMOVAL OF ANTIBIOTICS  

Antibiotics are known to fight the presence of diseases caused by bacteria 

around the world. However, these have become a global problem in recent years, 

due to the presence in aqueous systems, being considered as emerging pollutants 

like many other organic pollutants. Because of this, many organic compounds 

have been considered highly dangerous because they can cause serious problems 

in both humans and different ecosystems [162, 163]. To reduce the problem of 

the presence of antibiotics in environmental systems, a wide variety of techniques 

have been reported that can range from biological to chemical [164, 165] that 

allow to obtain very good results in terms of the removal of these contaminants. 

Among these techniques that are considered of great importance due to the 

removal of antibiotics are the physicochemical processes such as advanced 

oxidation (AOPs) and ozonation [166] which has two mechanisms for the 

effective degradation of antibiotics based on ozone, which corresponds to 

indirect oxidation through the generation of free radicals, which function as 

alternatives or complementary in traditional wastewater treatment [167-169]. 

It is important to mention that advanced oxidation processes are processes that 

have technologies to degrade and mineralize the recalcitrant organic matter found 

in different bodies of water when reacting with hydroxyl radicals [170, 171] 

responsible for decreasing the levels of Chemical Oxygen Demand (COD) / 

Biological Oxygen Demand (BOD) by separating the oxidizing organic and 

inorganic components,  therefore, it is considered an alternative to traditional 

methods and that make it possible to increase the degradability of pollutants in 

wastewater and also, the inactivation of pathogenic organisms [172, 173] so that 

concentrations can be eliminated or reduced in ranges that do not affect 

environmental systems, there is also the removal of antibiotics in wastewater 

through the use of cellulose membranes[174],  granular activated carbon[175], 

powdered activated carbon [176], clays [177], polymers [178], among others 

adsorption techniques. To effectively perform this removal of compounds, the 

latter are used (adsorption) because they are the most economical, easy to obtain, 

with high percentages of reuse and environmentally friendly [162, 179, 180].  

This overview will look at the removal of amoxicillin via different methods, 

emphasizing removal by biopolymers and its derivatives. 

4.1 Removal of Amoxicilin (AMX) 

4.1.1 AOPs for amoxicillin removal 

The different advanced oxidation processes have been used effectively for the 

removal of different types of contaminants, whether for metals [181, 182], 

pesticides [183, 184], pharmaceutical compounds [185, 186], among others. In 

this way we find that there are advanced oxidation processes based on sulfate 

radicals (SR-AOP) since their high oxidizing power allow a high capacity to 

degrade organic compounds, so when detailing in factors such as temperature, 

pH, amount of catalyst [187] and concentration of the oxidant it was determined 

that they affect the elimination rate of AMX so this study allows to demonstrate 

that SR-AOP have the ability to degrade organic pollutants such as amoxicillin 

[188].  

Other studies are based on the treatment of AMX by irradiation and/or 

ultrasonic ozonation of medium – high frequency. They considered that the 

presence of alkaline species and humic acid presented a negative effect on 

elimination, decreasing by about 50%, thus, the application of ozonation allowed 

a rate of elimination 50 times faster than the mere use of ultrasound, so the use 

of the hybrid oxidation system was the best option in terms of the elimination of 

amoxicillin [189]. In this study they relied on the oxidative degradation of 

amoxicillin, suggesting 3 possible mechanisms based on hydroxylation (addition 

of OH• to the original compound), opening of the ring -lactam of four members 

and decarboxylation of free carboxylic acid and reorganization of the five-

membered thiazole ring [190-194]. 

The study considers the different ionized forms of amoxicillin (see Fig. 6) in 

order to demonstrate that degradation is greater when the amine is deprotonated 

(pH 10), there is a pair of free electrons for electrophilic attack, in addition there 

is a greater solubility of AMX crystals at that pH [195]. 

 

Figure 6. Ionized forms of amoxicillin in its different pKa values. 

However, despite the fact that oxidative degradation is observed, the authors 

mention that many of the existing AOPs do not lead to complete degradation, so 

a large number of intermediates are generated in the reaction. In this way, it is 

important to study these intermediates because, more toxic compounds may be 

generated than the initial one, so it is recommended that no type of treatment be 

carried out [189]. 

In addition to these, there are electrochemical processes [196], 

bioelectrochemical [197], Fenton and photo-fenton [198], AOPs based on UV 

rays [199], among others. 

4.1.2 Biochar for amoxicillin removal   

The use of biomass for the preparation of new materials is a good avenue for 

the removal of contaminants at low cost and friendly to the environment. This is 

why many authors have worked by using biochar for the removal of different 

types of antibiotics such as AMX. 

There are studies based on the manufacture of biochar derived from sludge 

from domestic wastewater treatment plants [200]; Biochar compatible with 

Ag/Fe nanoparticles for effective removal of antibiotics, with 86% effectiveness 

[201]; biochar from banana pseudostem fibers impunged with CoFe2O4 

nanoparticles determining that it is a good AMX adsorbent over a wide pH range 

[202]; another type is one that is prepared with microsphere catalysts consisting 

of magnetic Cu-Fe-FeC3 in biochar doped with nitrogen, using chitosan as a 

carrier material. This catalyst allowed its application in a wide pH range, in 

addition to having very good stability and low leaching of metal ions allowing a 

high degradation of organic pollutants. So the synthesis and use of efficient 

catalysts based on biochar in electro - Fenton heterogeneous systems highly 

beneficial, obtaining removals of 99.3% and even in the tenth cycle a elimination 

rate of 93% was recorded demonstrating a good stability of the material [203]; 
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there is also biochar derived from poultry waste feathers, so it is considered an 

ecological, cheap and practical method. Based specifically on the keratin of the 

pen, a 99.97% was obtained in terms of elimination efficiency [204]. 

4.1.3 Biopolymers for amoxicillin removal  

As is well known, the release of pharmaceutical compounds, such as 

antibiotics, have been of growing concern globally due to the effects they have 

on the environment and the general population. Over time, a wide variety of 

methods have been studied to make the removal of these compounds possible. 

However, most of these methods have important disadvantages such as the 

associated economic [205] and energy costs [206], which are not friendly to the 

environment, the complex assembly and even the formation of toxic intermediate 

compounds [189]. Therefore, it is necessary to develop economical, 

environmentally friendly, efficient and easy-to-use materials [207, 208]. Among 

them, biopolymers have these characteristics in addition to their easy 

modification and biocompatibility [209, 210] make them ideal for application in 

different methods of elimination. 

A very wide variety of antibiotic removal has been reported using different 

types of polymers and biopolymers [114, 211-218], among which we find 

removal of tetracyclines [112, 113, 219] and oxytetracyclines [114], 

ciprofloxacin [220], sulfamethoxazole [221], metronidazole [222], 

chloramphenicol [223], penicillin [224], amikacin [225], amoxicillin [59, 125], 

among other antibiotics. 

4.1.3.1 Removal of amoxicillin by alginate  

Alginate is an anionic polysaccharide (see Fig. 7) that has non-toxic 

characteristics, is stable, biocompatible and has the ability to form cross-links 

with different types of cations such as calcium carbonate, it is also a cost-

effective material that allows its use in different areas such as tissue engineering, 

biomedical, environmental, etc. [226, 227]. 

 

Figure 7. Molecular structure of sodium alginate. Adapted image [228]. 

Based on this material, a series of investigations have been reported in which 

the removal of amoxicillin is quite efficient. For this purpose, magnetic beads of 

alginate/glycodendrimer have been designed for the elimination of tetracycline 

and amoxicillin, these beads were prepared by encapsulating triazine dendrimer 

functionalized with Fe3O4/maltose in alginate. The authors mention that the 

adsorption of antibiotics was strongly affected by temperature, pH, contact time, 

adsorbent dose, ionic strength and initial antibiotic concentration. However, the 

maximum adsorption capacity was 475.19 mg g-1 for tetracycline and 416.67 mg 

g-1 , and its adsorption was possible through electrostatic interactions, hydrogen 

bonds and - interactions, so the removal of antibiotics turned out to be quite 

effective with this type of alginate-based polymers [229]. Other materials based 

on alginate correspond to graphene oxide/calcium alginate biocomposites for the 

elimination of amoxicillin [230], giving very good results since on the surfaces 

of graphene oxide we can find epoxy, hydroxy, carbonyl, carboxylic acid groups, 

and where alginate provides hydroxyl groups and functional carboxylic acid 

groups. Where the mechanism of amoxicillin adsorption is explained, as in other 

cases, by ionic interaction, hydrogen bonds and - interactions [229]. 

There are also nanocomposites based on limestone, activated carbon, and 

sodium alginate in order to remove antibiotics and different types of drugs from 

aqueous solutions. This compound showed advantages such as the speed of 

removal, the simplicity of its preparation, multifunctionality and high efficiency. 

Therefore, the results show an amoxicillin removal of 99.6% in a contact time of 

40 min [231]. In this way, there are other investigations in which they refer to 

the removal of amoxicillin and other antibiotics such as: cephalexin, through the 

use of Saccharomycescerevisiae (corresponds to a fungus, type of yeast used in 

the manufacture of bread, beer and wine) immobilized in calcium alginate as a 

biosorbent [232], sulfamethoxazole, using sodium alginate/magnetic hydrogel 

microspheres [226], among others. 

4.1.3.2 Removal of amoxicillin by chitosan  

Chitosan, derived from chitin [233] (see Fig. 8) is one of the substances with 

the greatest abundance and distribution after cellulose [234]. Chitosan, (1,4)-2-

amino-2-deoxy-d-glucan, is a linear polyamnosaccharide obtained after N-

deacetylation of chitin [235-237]. Chitin is the structural component of the 

exoskeleton of shrimp, lobsters and crabs [234] it is also present in the cell walls 

of fungi and yeasts [237, 238], green algae and cuticles of insects and arachnids. 

Chitosan has gained great momentum due to its biological properties, non-

toxicity [239] and its applications in the medical, food, etc. Sectors [233, 235, 

240]. The recovery of chitosan from seashell waste and seafood debris generated 

by the food processing industries makes this polymer one of the most important 

renewable assets. Now, due to the extensive properties of chitosan [241], several 

investigations have been reported regarding the removal of antibiotics through 

the use of it. Thus, the literature indicates the adsorption of antibiotics such as 

ciprofloxacin [113], erythromycin, amoxicillin [242], amicacin [243], tylosin, 

norfloxacin [244], among others, in which adsorption was established as high 

capacity. 

 

Figure 8.  Structures of chitin (a) and chitosan (b). 

Chitosan, being a polysaccharide that has different characteristics such as 

being biocompatible, presenting biodegradability and antibacterial activity [245, 

246] it has been shown that its use exhibits better properties than other 

commercial pearls or microbeads [247] and can adsorb potentially toxic 

compounds [248]. The literature mentions that the use of chitosan either in the 

form of chitosan beads [249], chitosan-carbon pearls [250] chitosan resin pearls 

[251] etc. for the removal of antibiotics such as amoxicillin is quite effective. 

Chitosan, like many molecules has different behaviors depending on the pH at 

which they are faced, figure 9 details the behavior of chitosan against basic and 

acidic solutions. In general, chitosan molecules are ionized approximately up to 

pH 6 and ionization increases as the pH moves towards lower values. Thus, the 

amino groups of the chains, at a certain pH, capture the H+ ions in solution [252, 

253] 

 

Figure 9. Outline of the behavior of chitosan against acidic and basic solutions. 

Adapted image [254]. 

At low pH condition Amine group become 
protonated

Chi—NH2 + H3O Chi—NH3 + H2O
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 solution
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Chi—NH2 + H2O
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For the removal of amoxicillin, Fe3O4/activated carbon/chitosan adsorbents 

prepared by co-precipitation methods have been used, which turns out to be a 

fairly simple technique; this method yielded good results in terms of the removal 

of 3 antibiotics under study among which is AMX. The authors mention that the 

absorption value decreases almost linearly as the amount adsorbed increases. 

Finally, an approximate elimination of 72% of amoxicillin was achieved [255]. 

Chitosan has also been used to remove mixed contaminants such as 

pharmaceutical compounds and heavy metals. Specifically, the design of Fe/Ni 

bimetallic nanoparticles that have been stabilized with chitosan were quite 

effective for the removal of AMX and Cd(II) from aqueous solutions with results 

of 68.9% and 81.3% elimination of AMX and Cd(II) respectively [256]. With a 

series of results obtained via SEM, EDS, XDR, and FTIR, they were able to 

verify that the formation of iron oxides allowed the adsorption of Cd(II) on the 

oxide [257], at the same time, the nanoparticles designed showed functions of 

catalytic reduction of contaminants. Regarding the reuse of the material, results 

of decrease in disposal efficiency ranging from 68.9% to 2.2% for AMX and 

81.3% to 22.8% for Cd(II) after the third cycle were obtained. This behavior is 

explained due to the formation of oxides, adsorption of Cd(II) and corrosion on 

the surface of the nanoparticle which leads to a leaching of the Fe/Ni system, so 

it is determined that the nanoparticle loses its reactivity [258]. 

Another quite attractive compound for the removal of AMX consists of the 

synthesis of a magnetic compound of chitosan / PVP (CPF) by means of a co-

precipitation [259] to finally form the compound chitosan / PVP / Fe3O4 (see fig. 

10) taking into account different proportions (CPF37, CPF55, CPF73), where 

they report that the best adsorbent corresponds to CPF37 reaching 93% 

efficiency at pH 8. The use of different spectroscopic techniques such as FTIR, 

SEM-EDX, TEM, VSM, XDR, TG-DTA, DSC allowed them to have an 

excellent characterization of the material. 

 

Figure 10.  Chitosan/polyvinylpyrrolidone/Fe3O4 compound design for the 

removal of AMX and Cd(II). Adapted image [259].   

CONCLUSIONS 

Organic pollutants, particularly antibiotics, are compounds of high 

environmental concern globally due to the serious problems they generate. So 

over the years, a series of environmentally friendly methods have been sought 

and at the same time economical and efficient to allow an effective removal of 

this type of contaminants.  In this way, bio-based materials have greater and 

better characteristics than conventional treatments. In general, chitosan-based 

materials are highly effective in terms of the removal of different types of 

contaminants, in addition to their non-toxic, biocompatible, economic, natural 

origin, economic, easy-to-use nature, among other characteristics, making it an 

ideal material for use in environmental remediation issues. 
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