PRECISION AND PROGRESS: ADVANCES IN ANALYTICAL CHEMISTRY FOR BIOANALYSIS

SASWATI PANIGRAHY^a, KALPANA SWAIN^b, AND SATYANARAYAN PATTNAIK^{b,*}

^aSt. John Institute of Pharmacy and Research, Vevoor, Manor Road, Palghar (E), Maharashtra, India. ^bFaculty of Pharmacy, Sanskriti University, Mathura, India.

ABSTRACT

Analytical chemistry is pivotal in the progression of bioanalysis, facilitating precise quantification and characterization of biomolecules within intricate biological environments. This chapter offers an outline of the basic principles of analytical chemistry employed in bioanalytical techniques. It covers key topics including sample preparation techniques, separation methods such as chromatography and electrophoresis, detection techniques including mass spectrometry and spectroscopy, and data analysis strategies. In addition, advancements in instrumentation, miniaturization, and automation are discussed, highlighting their impact on improving the sensitivity, selectivity, and throughput of bioanalytical workflows. Overall, this review emphasizes the pivotal role of analytical chemistry in driving innovations and advancements in bioanalysis.

Keywords: Bioanalysis; Drug development; Good Laboratory Practice; High-performance liquid chromatography; Analytical chemistry; Bioanalytical instruments.

1. INTRODUCTION

Analytical chemistry as a multidisciplinary domain often intersects with diverse scientific fields and finds broad applications in research, industry, healthcare, and environmental science. Bioanalysis refers to the field of analytical chemistry dedicated to quantitatively measuring various substances present in biological samples. The primary objective of bioanalysis is to ascertain the concentration of specific molecules, such as pharmaceutical drugs, hormones, or biomarkers, in biological samples like blood, urine, or tissues [1-3]. In the realm of pharmaceutical and clinical research, bioanalysis assumes a pivotal role. It aids researchers and scientists in comprehending the pharmacokinetics of drugs, encompassing their absorption, distribution, metabolism, and excretion [4, 5]. Furthermore, bioanalysis facilitates the assessment of the safety and efficacy of drugs, along with the monitoring of biomarkers linked to various diseases. This information proves indispensable in processes like drug development, therapeutic drug monitoring, and clinical diagnostics. The accuracy and reliability of bioanalytical data are essential for making informed decisions regarding the safety and efficacy of pharmaceutical compounds during the drug development process.

2. FUNDAMENTAL PRINCIPLES OF ANALYTICAL CHEMISTRY

The key principles of analytical chemistry form the cornerstone of accurate and reliable chemical analysis (Figure 1). These principles guide the design and execution of analytical techniques, ensuring precise determination of the composition of substances [6, 7]. The following sub-sections discuss the key aspects.

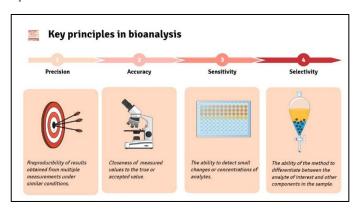


Figure 1. The key principles in bioanalysis.

2.1. Importance of Precision and Accuracy

Analytical methods aim for both precision (reproducibility of results) and accuracy (closeness to the true value). Calibration and standardization are

employed to achieve reliable measurements. Precision refers to the consistency or reproducibility of measurements. In other words, it assesses how close repeated measurements of the same sample are to each other. A precise analytical method produces data with low variability or scatter $^{[8]}$. Precision is often expressed using statistical measures such as standard deviation, coefficient of variation, or confidence intervals. For example, if a laboratory pipette consistently delivers 10.00 mL of solution in multiple trials, and the measurements have a low deviation from the mean value (e.g., $10.00\pm0.02\,\text{mL}$), the method is considered precise.

Accuracy measures how close a measured value is to the true or accepted value. An accurate analytical method provides results that are close to the actual value, regardless of whether the measurements are consistent or not ^[8]. Accuracy is often evaluated by comparing results to a known standard or reference material. For example, if a balance is calibrated using a certified weight, and subsequent measurements consistently match the true weight, the method is considered accurate.

Precision and accuracy are related but distinct concepts. A method can be precise but not accurate producing consistent results that are consistently offset from the true value. Similarly, a method can be accurate but not precise producing results that are close to the true value but with significant variability. Quality control measures in analytical chemistry aim to ensure both precision and accuracy [9]. Regular calibration using standards, running control samples, and participating in proficiency testing are common practices to monitor and improve the quality of analytical results. Uncertainty is a measure of the doubt or confidence associated with a measurement result. It encompasses both random errors affecting precision and systematic errors affecting accuracy. Proper assessment and reporting of uncertainty contribute to transparent and reliable analytical data. Both precision and accuracy are critical considerations in analytical chemistry. A balance between these two factors is essential for obtaining trustworthy and meaningful results in various bioanalytical applications.

2.2. Role of Sensitivity and Selectivity

Sensitivity refers to the method's ability to detect small changes in concentration, while selectivity ensures that the method responds only to the target analyte, avoiding interference from other substances. Sensitivity is a crucial parameter, especially when dealing with trace amounts of substances ^[10]. It is a measure of how well an analytical method can distinguish between small differences in concentration, and it directly influences the lower limit of detection (LoD) and the lower limit of quantification (LoQ). Limit of detection refers to the lowest concentration of an analyte that can be reliably detected but not necessarily quantified. It is often determined based on the signal-to-noise ratio, where the signal from the analyte is compared to the background noise. On the other hand, the limit of quantification refers to the lowest concentration of an analyte that can be accurately measured and quantified with acceptable precision and accuracy. It is generally a concentration slightly higher than the LoD.

Sensitivity is often assessed through the signal-to-noise (s/n) ratio, where the signal (analyte response) is compared to the noise (background signal in the absence of the analyte). A higher s/n ratio indicates better sensitivity. The choice of analytical instrumentation significantly affects sensitivity. Advanced and highly sensitive instruments, such as mass spectrometers or fluorescence spectrometers, are often employed for analyses requiring high sensitivity. Various strategies can be employed to enhance sensitivity, including optimizing instrument parameters, improving sample preparation techniques, using selective detection methods, and reducing background noise. However, achieving high sensitivity should be balanced with selectivity to avoid false positives or interference from other components in the sample [11]. Selective methods, such as chromatography and specific detection techniques, are often used in conjunction with sensitive instruments.

By adhering to these fundamental principles, analytical chemists ensure the robustness and reliability of their methods, enabling the accurate analysis of a wide range of substances in various applications.

3. KEY ANALYTICAL TECHNIQUES IN BIOANALYSIS

3.1. Chromatography

Chromatographic techniques continue to be widely used methods for both separating and quantifying biomolecules [12]. The principles of chromatographic techniques involve the differential distribution of components in a mixture between a stationary phase and a mobile phase. They are particularly useful for analyzing complex mixtures and identifying specific compounds. High-performance liquid chromatography (HPLC) and gas chromatography (GC) are frequently employed in bioanalysis to separate and quantify analytes. While liquid chromatography, such as HPLC, is more common for biomolecules, GC is suitable for volatile compounds [13]. Some of the chromatographic techniques commonly used in the analysis of biological molecules are discussed as follows.

3.1.1.Liquid Chromatography (LC)

The liquid chromatographic techniques have gained a lot of momentum in the field of bioanalysis [14-17]. Liquid chromatography (LC) encompasses a diverse set of chromatographic techniques where the mobile phase is a liquid. This method finds broad application in separating and analyzing diverse compounds, spanning pharmaceuticals, environmental samples, food and beverages, and various other fields [14, 16].

HPLC is a widely used liquid chromatographic technique characterized by the use of high-pressure pumps to move the mobile phase through the column. This high pressure allows for faster separations and improved resolution ^[15]. HPLC is versatile and can be used with various detectors, such as UV-Vis, fluorescence, and mass spectrometry.

In reversed-phase chromatography (RPC), the stationary phase is nonpolar, and the mobile phase is polar [18]. This technique is commonly used for separating hydrophobic compounds, with the retention time of analytes increasing as their hydrophobicity increases [19, 20]. On the contrary, in normal-phase chromatography (NPC), the stationary phase is polar, and the mobile phase is nonpolar.

Another intriguing chromatographic technique is size-exclusion chromatography (SEC) which is often deployed to separate molecules based on their size [21-23]. Larger molecules elute from the column more quickly as they are excluded from the pores of the stationary phase. This method is frequently employed for the analysis of polymers and biomolecules. Ion-exchange chromatography (IEC) is a technique utilized for separating ions according to their charge [24,25]. In this method, the stationary phase contains charged groups, attracting and retaining ions with opposite charges. This technique is frequently used for the separation of proteins and other charged biomolecules. It can also be used to purify and concentrate ions, as well as to separate mixtures of ions. In conclusion, ion exchange chromatography stands as a dependable and extensively employed method for the separation of ions and biomolecules.

Affinity chromatography exploits specific interactions between a target molecule and a ligand immobilized on the stationary phase ^[26]. Renowned for its high selectivity, this technique finds frequent application in purifying proteins, antibodies, and various other biomolecules. ^[27]. It can also be used to separate closely related molecules by taking advantage of their differences in affinity for

the ligand. Affinity chromatography is an important tool in the separation of biomolecules and for the analysis of proteins. It is also used in drug discovery, for identifying and isolating potential drug candidates. In summary, affinity chromatography stands out as a potent instrument for exploring and comprehending biomolecules and their interactions.

HPLC-MS (High-Performance Liquid Chromatography-Mass Spectrometry) is a powerful technique for the analysis of complex mixtures and the identification of unknown compounds. Chiral chromatography is used to separate enantiomers, which are molecule mirror-image isomers ^[28]. The separation of these stereoisomers is accomplished using chiral stationary phases ^[29]. Two-dimensional liquid chromatography (2D-LC) is another advancement in chromatographic techniques. To improve separation capabilities, 2D-LC employs two distinct chromatographic dimensions ^[30]. It's especially useful for complex samples where traditional one-dimensional separations may not provide enough resolution.

3.1.2.Gas Chromatography (GC)

While liquid chromatography (LC) is often the method of choice for analyzing polar and non-volatile compounds in bioanalysis, GC offers several advantages for certain applications. GC is a faster method, allowing for the analysis of larger sample volumes [31]. It is also more accurate than LC, providing more precise results. Furthermore, GC can be used to analyze compounds that are difficult to hydrolyze, such as lipids [32]. Additionally, GC is more sensitive than LC, allowing for the detection of lower concentrations of compounds. Some biomolecules, such as amino acids and steroids, may not be volatile in their native form. In such cases, sample derivatization may be necessary to convert these compounds into more volatile derivatives before analysis by GC. Various detectors can be coupled with gas chromatography, including flame ionization detectors (FID), electron capture detectors (ECD), thermal conductivity detectors (TCD), and mass spectrometers (MS). These detectors provide different levels of sensitivity and selectivity, allowing for versatile detection options in bioanalysis. GC is commonly employed in metabolomics studies to analyze the small-molecule metabolites present in biological samples. While gas chromatography has its advantages, it's essential to note that not all compounds are suitable for GC analysis, especially those that are thermally unstable or nonvolatile at reasonable temperatures. Combining both techniques in hyphenated systems, such as GC-MS or LC-MS, can provide a comprehensive approach to bioanalysis, covering a broader range of analytes [33].

3.2. Spectroscopy

Spectroscopy is a broad scientific technique that involves the interaction of electromagnetic radiation with matter [34]. It is widely used to study the composition, structure, and properties of materials. There are various spectroscopic methods, each utilizing a specific range of the electromagnetic spectrum and providing unique information about the sample. Common spectroscopic techniques are discussed as follows.

3.2.1. Ultraviolet-visible (UV-Vis) spectroscopy

Ultraviolet-visible (UV-Vis) spectroscopy involves the absorption of ultraviolet and visible light by molecules. This absorption occurs when electrons within the molecules transition from lower to higher energy states. UV-Vis spectroscopy is widely employed for both qualitative and quantitative analyses across various scientific disciplines [35-38]. UV-Vis spectroscopy is a widely utilized technique facilitating analysis of diverse groups of compounds, encompassing dyes, pigments, and biological molecules. Its frequent application in quantitative analysis is owed to its capability to measure sample absorbance at particular wavelengths. The Beer-Lambert law establishes a relationship between absorbance and the concentration of absorbing species, thus rendering UV-Vis spectroscopy invaluable for determining solute concentration in solutions. Chromophores are the specific chemical groups within molecules responsible for absorption in the UV-Vis region. UV-Vis spectroscopy aids in identifying these chromophores, providing valuable information about the molecular structure of compounds.

Conjugated systems in organic molecules, such as double bonds or aromatic rings, often exhibit absorption in the UV-Vis range. UV-Vis spectroscopy is employed to investigate the degree of conjugation, electronic transitions, and structural changes in these systems.

UV-Vis spectroscopy is valuable in the analysis of biological molecules, including proteins, nucleic acids, and enzymes [39]. The absorption spectra of these biomolecules provide insights into their structural characteristics and allow researchers to monitor changes in conformation or binding interactions. Moreover, UV-Vis spectroscopy is a common tool for pharmaceutical quality control [40-42]. It is used to assess the purity of drug compounds, determine concentrations in formulations, and monitor the stability of pharmaceutical products over time.

In summary, UV-Vis spectroscopy is a widely utilized and versatile technique with applications spanning diverse scientific disciplines. Its ease of use, speed, and ability to provide valuable information about the electronic structure of molecules make it an indispensable tool in research, industry, and analytical laboratories.

3.2.2. Infrared (IR) Spectroscopy

IR spectroscopy measures the absorption of infrared radiation by molecular vibrations [43]. The method involves the absorption of infrared radiation by molecules, leading to characteristic spectra that can be used for qualitative and quantitative analysis. It is used for identifying functional groups in organic and inorganic compounds, determining molecular structures, and analyzing polymers [3,37]. While IR spectroscopy is widely used for qualitative analysis and structural elucidation, its application for quantitative analysis may be limited by factors such as spectral interferences, sample matrix effects, and the need for accurate calibration standards. In situations where these challenges can be addressed, IR spectroscopy can be a valuable tool for both qualitative and quantitative analytical purposes.

3.2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy analyzes the nuclear magnetic properties of certain atomic nuclei in a magnetic field. It is widely used for determining the structure of organic compounds, elucidating molecular conformations, and studying biomolecules like proteins and nucleic acids [44, 45]. NMR provides detailed information about the nuclei in a sample and is particularly valuable for the analysis of complex biological systems.

NMR spectroscopy provides atomic-level details of the spatial arrangement of atoms within these molecules. Furthermore, the structure of proteins is often determined using NMR [46, 47]. It can provide information about protein folding, secondary structure, and interactions with ligands or other proteins [47]. NMR spectroscopy is also used to investigate the structure and dynamics of nucleic acids, such as DNA and RNA [48, 49]. It allows researchers to study features like base pairing, helical conformations, and interactions with proteins.

While traditional NMR is performed in solution, solid-state NMR is used for the analysis of biomolecules in solid phases ^[50]. This technique is particularly valuable for studying membrane proteins and insoluble protein aggregates. Another intriguing technique is in vivo NMR which allows the non-invasive study of biological processes within living organisms ^[48, 51, 52]. It is used for metabolic profiling, monitoring physiological changes, and studying disease states.

Despite its many advantages, NMR does have limitations, including the requirement for high sample concentrations, potential signal overlap in complex mixtures, and sensitivity constraints. However, advancements in NMR technology and methodology continue to expand its applications and enhance its capabilities in bioanalysis.

3.2.4. Mass Spectrometry (MS)

Mass spectrometry serves as an invaluable tool in bioanalysis, allowing estimation of biomolecules stemming from their mass-to-charge ratios [53, 54]. In bioanalysis, mass spectrometry is often augmented with methods like liquid chromatography or gas chromatography to enhance its capabilities. Techniques such as matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI) coupled with MS enable the analysis of complex protein mixtures [55-57]. MS is widely applied to analyze small molecules in bioanalysis, including metabolites, drugs, and lipids. It is particularly useful in pharmacokinetic studies to monitor drug concentrations in biological samples. Mass spectrometry is a cornerstone in metabolomics, enabling the comprehensive analysis of small molecules in biological samples [58]. It helps in

understanding metabolic pathways, identifying biomarkers, and studying changes in metabolite profiles. Lipid profiling is performed using MS to analyze the diverse classes of lipids present in biological samples. This is crucial for understanding lipid metabolism and its implications in health and disease. MS is a key tool in proteomics for the identification and quantification of proteins within complex mixtures [59]. Techniques like liquid chromatography-tandem mass spectrometry (LC-MS/MS) are commonly used for proteomic studies. MS is employed in glycomics to analyze the complex structures of carbohydrates and glycoproteins [60]. It aids in understanding glycan structures and their roles in various biological processes. Stable isotope labeling combined with MS is used for quantitative studies, allowing the measurement of metabolic turnover rates and the assessment of metabolic flux in biological systems [61, 62]. Tandem mass spectrometry (MS/MS) is often used to enhance specificity by analysing fragmentation patterns. MS/MS can also be used to detect modifications of biomolecules, such as phosphorylation or acetylation. Further, MS/MS can also be used to analyze complex mixtures, providing detailed information about the individual molecules present.

Mass spectrometry has revolutionized bioanalysis by offering high sensitivity, specificity, and versatility. Advances in instrumentation and techniques continue to expand the capabilities of MS in various fields, making it an indispensable tool in modern analytical laboratories.

3.2.5. X-ray Spectroscopy

X-ray spectroscopy includes techniques such as X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF). XPS provides information about the elemental composition and chemical state of a material's surface, while XRF is used for elemental analysis [63, 64]. In XRF spectroscopy, a sample is irradiated with X-rays, causing inner-shell electrons to be ejected. Electrons from higher energy shells fill these vacancies, and when they transition, X-ray photons are emitted. The X-rays emitted possess characteristic signatures corresponding to the elements contained within the sample. XRF is used for elemental analysis in biological samples. It can determine the elemental composition of tissues, cells, and biological fluids [65].

In biomedical research, XRF is applied to study trace elements and their distribution in biological samples, helping to understand the role of elements in health and disease. XPS involves irradiating X-rays onto a sample, which causes the ejection of photoelectrons from the outer electron shells of atoms. X-ray Absorption Spectroscopy (XAS) measures the absorption of X-rays by a sample as a function of energy. It provides information about the electronic and local structure of the absorbing atoms. XAS has applications in catalysis, bioinorganic chemistry, and the study of electronic states in materials [66,67]. To ascertain the elemental composition and chemical state of the sample, the kinetic energy and number of ejected electrons are measured. In bioanalysis, XAS can be applied to study metalloproteins, metalloenzymes, and the coordination environments of metal ions in biological systems.

X-ray microscopy techniques, such as X-ray fluorescence microscopy (XRFM) and X-ray phase contrast microscopy, enable imaging of cellular structures and elemental mapping at the subcellular level [^{68, 69]}. These techniques are valuable for studying cellular processes, investigating metal ion distributions, and understanding the role of trace elements in cells. Another intriguing technique, X-ray Computed Tomography (XCT), commonly used in medical imaging, can provide detailed 3D images of biological samples without the need for sectioning ^[70]. In bioanalysis, XCT is applied to visualize and study internal structures of organs, tissues, and small organisms ^[71]. These X-ray spectroscopy techniques contribute to advancements in medical research, drug development, and the understanding of biological systems.

3.2.6. Raman Spectroscopy

Raman spectroscopy measures the inelastic scattering of monochromatic light, providing information about molecular vibrations and rotational transitions. Incident monochromatic light excites the sample, and the scattered light is collected and analyzed. The energy difference between the incident and scattered photons corresponds to the vibrational energy of the molecules. It is used for the identification of chemical compounds and the study of molecular structures [72]. One of the main advantages of Raman spectroscopy in bioanalysis is its non-destructive nature.

It requires minimal sample preparation and can be performed on live cells and tissues. Being label-free means that the technique doesn't rely on external markers or dyes, preserving the native state of the biological sample. Raman spectroscopy can identify various biomolecules, including proteins, nucleic acids, lipids, and carbohydrates, based on their unique vibrational spectra [72]. Specific peaks in the Raman spectrum correspond to different molecular bonds and functional groups, enabling the discrimination of biomolecules. Raman spectroscopy can be applied to image and map biological samples at the cellular and subcellular levels. Cellular components and organelles can be identified and spatially mapped based on their Raman signatures [73]. One challenge in biological samples is the strong Raman scattering from water. Techniques like coherent anti-Stokes Raman scattering (CARS) can be employed to suppress the water background and enhance sensitivity [74].

Raman spectroscopy continues to find applications in various fields, including pharmaceuticals, biotechnology, medical diagnostics, and fundamental biological research, owing to its versatility and capability for non-destructive, label-free analysis of biological samples.

3.2.7. Circular Dichroism (CD) Spectroscopy

CD spectroscopy measures the differential absorption of left- and right-circularly polarized light. It is used to study the secondary structure of proteins, nucleic acids, and other chiral molecules [75]. Chiral molecules exhibit different CD spectra depending on their secondary and tertiary structures, making CD a valuable tool for studying biomolecular conformations.

CD spectroscopy is commonly exploited in the analysis of the secondary structure of proteins, providing information about the relative amounts of α -helices, β -sheets, and random coils $^{[75]}$. The CD spectrum of a protein in the far-UV region (190-250 nm) is particularly sensitive to its secondary structure. CD spectroscopy can also be applied to study the conformation of nucleic acids. The B-form of DNA, for example, exhibits a characteristic CD spectrum, and changes in conformation can be detected $^{[76]}$.

CD spectroscopy is employed in monitoring changes in the secondary structure of proteins during processes such as folding or unfolding. It can be employed to study protein stability under different conditions, such as changes in temperature, pH, or the presence of denaturing agents [77]. CD spectroscopy can provide insights into protein-protein interactions and protein-ligand binding events. Changes in CD spectra upon complex formation can be indicative of conformational changes or alterations in the secondary structure of the interacting molecules. CD spectroscopy is used to study changes in protein conformation during enzymatic reactions. It helps in understanding the structural aspects of catalysis and substrate binding.

Circular Dichroism spectroscopy is a valuable tool in structural biology, biochemistry, and pharmaceutical research. It provides detailed information about the conformational properties of biomolecules, offering insights into their structure-function relationships and aiding in various aspects of bioanalysis.

3.2.8. Atomic Absorption Spectroscopy (AAS)

AAS measures the absorption of specific wavelengths of light by individual atoms in the gaseous state [78]. It is widely used for elemental analysis of metals in various samples, including environmental, biological, and geological samples. The technique involves three main steps: atomization, excitation, and detection. The sample is atomized to convert the elements into free atoms, and these atoms absorb light at characteristic wavelengths when exposed to radiation.

AAS finds applications in the quantification of various essential elements such as metals (e.g., calcium, magnesium, iron, zinc) and trace elements in biological specimens [79-81]. In clinical laboratories, AAS is used to measure concentrations of essential elements and trace metals in blood, urine, and tissues [82, 83]. This technique is pivotal in diagnosing and monitoring disorders associated with mineral imbalances, heavy metal toxicity, and nutritional deficiencies. AAS is employed to study metalloproteins and enzymes that contain metal cofactors. It helps in understanding the role of metals in biological systems and their involvement in enzymatic reactions.

Furthermore, AAS aids in studying the bioavailability of essential elements and the impact of dietary choices on elemental intake. Atomic Absorption

Spectroscopy is valued for its sensitivity, selectivity, and accuracy in elemental analysis. It continues to be an essential tool in bioanalysis, providing valuable information for both research and clinical applications.

3.2.9. Electron Spin Resonance (ESR) Spectroscopy

ESR spectroscopy, also known as electron paramagnetic resonance (EPR), measures the absorption of microwave radiation by unpaired electrons in paramagnetic substances [84]. It is used to study radicals and transition metal ions. ESR spectroscopy detects the magnetic moment associated with electron spin. Paramagnetic species, such as unpaired electrons in free radicals or certain metal ions, exhibit ESR signals when exposed to a magnetic field and microwave radiation [84]. The resonance condition occurs when the energy absorbed by the electron spin matches the energy difference between spin states, leading to the observation of ESR signals. ESR is widely used in bioanalysis to study free radicals and reactive oxygen species (ROS) in biological systems. It provides information about the concentration, nature, and reactivity of free radicals, which play important roles in various physiological and pathological processes [85]. ESR spectroscopy is applied to measure oxidative stress in biological samples by quantifying the levels of free radicals and assessing their impact on cellular components. It helps in understanding the role of oxidative stress in aging, disease, and cellular damage.

ESR is particularly useful in studying biological membranes. Spin-labeled lipids or other membrane components can be used to probe the structure and dynamics of lipid bilayers and membrane proteins. ESR imaging techniques, such as Overhauser-enhanced Magnetic Resonance Imaging (OMRI), have been developed for in vivo imaging of free radicals [86]. ESR imaging is employed in preclinical studies to visualize and map the distribution of free radicals in living organisms. This spectroscopic method is also used in radiation dosimetry, particularly in the field of radiation biology. It helps measure the absorbed dose in irradiated materials and tissues, providing valuable information for radiation therapy and environmental monitoring [87]. Hence, ESR spectroscopy is a versatile tool in bioanalysis, having diverse applications in areas such as oxidative stress research, structural biology, and medical imaging.

Hence, diverse analytical techniques are employed in bioanalysis to detect, quantify, and characterize biomolecules and drugs in biological samples. These methods range from chromatographic and electrophoretic separations to spectroscopic and electrochemical techniques, each offering distinct advantages and limitations. Table 1 provides a comparative overview of commonly used analytical techniques in bioanalysis, highlighting their principles, sensitivity, applications, benefits, and challenges.

 Table 1. Comparison of Analytical Techniques in Bioanalysis.

Technique	Principle	Sensitivity	Sample Type	Advantages	Limitations
Liquid Chromatography— Tandem Mass Spectrometry (LC-MS/MS)	Separation by liquid chromatography followed by mass spectrometric detection	High	Plasma, urine, tissues	High sensitivity and specificity, suitable for complex biological matrices	Expensive, requires skilled personnel
High-Performance Liquid Chromatography (HPLC)	Separation based on interactions with stationary phase	Moderate	Plasma, serum, pharmaceutical samples	Widely available, robust, good reproducibility	Lower sensitivity compared to LC- MS/MS
Gas Chromatography–Mass Spectrometry (GC-MS)	Separation via gas chromatography, detection by mass spectrometry	Very High	Volatile compounds, blood, breath	High specificity, excellent for volatile and thermally stable analytes	Requires derivatization for non-volatile compounds
Capillary Electrophoresis (CE)	Separation based on charge and size using an electric field	Moderate	Plasma, urine, cerebrospinal fluid	High efficiency, low sample and solvent consumption	Limited sensitivity, requires UV or MS detection
Electrochemical Sensors	Measurement of electrical signals generated by biochemical reactions	Variable	Blood, saliva, sweat	Rapid detection, portable, low-cost	Limited to electroactive compounds, potential interference
Fourier-Transform Infrared Spectroscopy (FTIR)	Measures molecular vibrations and functional groups	Moderate	Serum, tissue, biofluids	Non-destructive, minimal sample preparation	Less specific for complex mixtures
Raman Spectroscopy	Scattering of monochromatic light due to molecular vibrations	Moderate	Cells, tissues, biofluids	Label-free, provides molecular fingerprints	Weak signal, fluorescence interference
Nuclear Magnetic Resonance (NMR) Spectroscopy	Measures nuclear spin interactions in a magnetic field	Moderate	Plasma, urine, tissue extracts	Non-destructive, highly reproducible	Low sensitivity, expensive instrumentation
Ultraviolet-Visible (UV-Vis) Spectroscopy	Absorption of UV or visible light by molecules	Low	Biological samples, proteins, DNA	Simple, fast, cost- effective	Low sensitivity and specificity for complex mixtures
Fluorescence Spectroscopy	Measures fluorescence emission from biomolecules	High	Proteins, nucleic acids, biofluids	High sensitivity, suitable for labeled molecules	Fluorescence quenching, requires fluorophores

3.3. Effective Sample Preparation in Bioanalysis

Effective sample preparation is a crucial step in bioanalysis that significantly influences the accuracy, precision, and reliability of analytical results. Biological samples, such as blood, urine, tissues, and cells, often contain complex matrices that can interfere with analytical measurements [88]. Proper sample preparation helps remove unwanted matrix components, reducing interference and improving the selectivity of the analysis.

Some analytical techniques require high sensitivity to detect trace amounts of analytes, particularly in bioanalysis where target compounds may be present at low concentrations. Effective sample preparation methods can concentrate analytes, improving sensitivity and the ability to detect and quantify low-abundance biomolecules [88]. Accurate and precise analytical results are essential for drawing meaningful conclusions from bioanalytical studies.

Sample preparation methods that minimize variability and ensure reproducibility contribute to accurate and precise measurements. Biological samples often contain endogenous substances that can interfere with analytical measurements. Methods of sample preparation, such as solid-phase extraction or liquid-liquid extraction, are adept at selectively removing interfering compounds, thereby guaranteeing precise quantification of the target analytes [89]. Some analytes in biological samples are prone to degradation or chemical transformations. Proper sample preparation helps protect analyte stability by minimizing exposure to factors that can lead to degradation, such as enzymes, pH changes, or temperature variations.

Contamination from external sources or sample handling procedures can compromise analytical results. Effective sample preparation includes measures to minimize contamination, ensure the integrity of the sample, and prevent false-positive or false-negative results. Different analytical techniques have specific

requirements regarding sample composition and format. Sample preparation methods must be compatible with the chosen analytical technique to ensure optimal performance and accurate data acquisition. Automation is increasingly employed in bioanalysis to improve throughput and reduce human error. Well-designed sample preparation methods are amenable to automation, streamlining workflows and enhancing overall efficiency. In regulated environments, such as clinical trials or drug development, compliance with regulatory requirements is essential ^[90]. Adequate sample preparation documentation and validation contribute to meeting regulatory standards and ensuring the reliability of analytical data. Additionally, proficient sample preparation often proves economical by diminishing the consumption of reagents and cutting down on the time and resources needed for analysis. Streamlined sample preparation workflows contribute to higher throughput and increased laboratory efficiency. In summary, effective sample preparation is a critical aspect of bioanalysis that impacts the quality and reliability of analytical data.

3.4. Techniques for Extracting and Purifying Biological Samples

Extracting and purifying biological samples is a critical step in bioanalysis, allowing for the isolation and concentration of target analytes while removing interfering substances. Several techniques are commonly employed for this purpose. Some of the widely used methods are discussed as follows.

3.4.1. Liquid-liquid extraction (LLE)

Liquid-liquid extraction (LLE), also known as solvent extraction, is a widely used technique for separating and purifying substances from a liquid mixture [91, 92]. In the context of bioanalysis, LLE is often employed to extract and isolate specific analytes from complex biological samples. In LLE, the biological sample is mixed with a water-immiscible organic solvent.

The target analytes partition based on their solubility. Hydrophobic analytes tend to prefer the organic phase, while hydrophilic analytes remain in the aqueous phase. After thorough mixing, the mixture is allowed to settle, and the two phases are separated. This separation can be achieved through techniques such as centrifugation or decantation. The phase, now containing the extracted analytes, is often evaporated to dryness or concentrated using techniques like rotary evaporation or nitrogen blowdown [91]. The concentrated extract can then be reconstituted in a smaller volume for further analysis.

However, several challenges are faced by the analytical chemists while using this method. Large sample volumes may be challenging due to the need for significant amounts of organic solvent. Moreover, emulsions, the formation of stable mixtures of the two phases, can occur and complicate phase separation. Loss of analytes or co-extraction of unwanted compounds can occur, affecting the purity of the final extract. Despite some challenges, liquid-liquid extraction remains a widely used and effective method for isolating and concentrating analytes from complex biological matrices in various analytical applications. The technique is often employed in combination with other sample preparation methods to achieve the desired level of purification.

3.4.2. Solid-Phase Extraction (SPE)

SPE involves passing the biological sample through a solid-phase cartridge containing a sorbent material [93, 94]. Analytes are selectively retained in the solid phase while interfering substances are washed away. Elution with a suitable solvent allows for the recovery of purified analytes. SPE is widely used for the cleanup and concentration of samples, offering selectivity and automation capabilities.

The solid-phase extraction cartridge is first conditioned with a suitable solvent to activate the sorbent and remove any impurities present in the sorbent material. The biological sample, often in a liquid form, is then passed through the SPE cartridge. The target analytes selectively interact with the sorbent, leading to their retention, while interfering compounds pass through. Unwanted matrix components are removed by washing the SPE cartridge with a wash solvent. The wash solvent helps eliminate interfering substances that may have been retained on the sorbent. The target analytes are subsequently eluted from the sorbent using a solvent that disrupts the interaction between the analytes and the sorbent. Elution results in a concentrated and purified extract containing the analytes of interest. The eluted solvent is often evaporated to dryness or concentrated to reduce the volume. The final concentrated extract is then reconstituted in a suitable solvent for analysis.

Solid-phase extraction is a versatile and widely applied technique in bioanalysis, contributing to the success of various analytical methods by improving selectivity, sensitivity, and overall sample cleanliness.

3.4.3. Protein Precipitation

Protein precipitation is often used to remove proteins from biological samples [95, 96]. Precipitating agents are selected based on their ability to denature and precipitate proteins. Common agents include organic solvents and acids [96]. Common organic solvents include acetonitrile, methanol, and ethanol. The biological sample, which may be blood, serum, plasma, urine, or tissue homogenate, is mixed with the chosen precipitating agent. The ratio of sample to precipitating agent is critical in this analysis. The addition of the precipitating agent denatures proteins and causes their precipitation. Proteins lose their native structure, leading to aggregation and separation from the sample matrix. The mixture is centrifuged to separate the precipitated proteins from the supernatant containing the target analytes. The centrifugation step is crucial for obtaining a clear supernatant for subsequent analysis. The supernatant, now free of proteins, contains the purified analytes and can be further concentrated or directly analyzed using the chosen analytical method.

3.4.4. Solid-Phase Microextraction (SPME)

SPME uses a coated fiber to selectively extract analytes from the sample matrix [97]. After exposure, the fiber is desorbed directly into the analytical instrument for analysis. SPME is advantageous for its simplicity and the ability to perform direct extraction from the sample matrix. The choice of coating material on the SPME fiber is crucial and depends on the nature of the analytes. Common coatings include polydimethylsiloxane (PDMS), divinylbenzene

(DVB), and mixed phases ^[97]. Solid-phase microextraction is prefirred due to its simplicity, versatility, sensitivity, and selectivity for the extraction of analytes. The technique continues to find applications in diverse fields, contributing to advancements in analytical chemistry and bioanalytical research.

Other techniques adopted for the extraction and purification of biological samples include dialysis. Dialysis relies on the principle of selective permeability of a semi-permeable membrane [98]. The membrane allows the passage of small molecules (e.g., ions, small solutes) while retaining larger molecules (e.g., proteins, macromolecules). In bioanalysis, dialysis is often used for the removal of salts or buffer components from a sample.

CONCLUSION

In conclusion, the application of analytical chemistry principles in bioanalysis stands at the forefront of advancing our comprehension of complex ecosystems. A meticulous amalgamation of various analytical techniques, from chromatography and mass spectrometry to spectroscopy and electrochemistry has assisted researchers in gaining unparalleled insights into the composition, structure, and function of biomolecules. The pursuit of greater sensitivity, selectivity, and speed has fuelled innovations in instrumentation and methodologies, fostering breakthroughs in fields such as clinical diagnostics, pharmaceutical development, etc. The dynamic interplay between analytical chemistry and bioanalysis continues to shape the landscape of life sciences, enabling the identification of biomarkers, elucidation of biochemical pathways, and the development of targeted therapies. As we navigate the ever-evolving challenges posed by the complexity of biological samples, the principles of analytical chemistry serve as guiding beacons, paving the way for transformative discoveries and pushing the boundaries of what is achievable in the realm of bioanalysis.

The future trends of bioanalysis are poised for significant advancements, driven by technological innovations and evolving research needs. One prominent trend is the integration of multi-omics approaches, encompassing genomics, proteomics, metabolomics, and beyond, to comprehensively understand biological systems. Additionally, the application of artificial intelligence and machine learning in bioanalysis is enhancing data interpretation, accelerating analysis workflows, and facilitating the discovery of complex biomolecular patterns. As these trends converge, bioanalysis is positioned at the forefront of shaping and driving innovations in therapeutics, and personalized healthcare.

DECLARATIONS

Availability of data and materials: It is available on request to the corresponding author.

Competing interests: The authors declare no potential conflicts of interest.

Funding: No funding to declare.

Ethics approval and consent to participate: Not applicable

Authors' contribution: S. Panigrahy conducted an intensive literature review. K. S. contributed to review writing. S.Pattnaik edited the draft manuscript and provided visualization. All authors involved in the conceptualization, read and approved the final manuscript.

REFERENCES

- [1] Moein, M. M.; El Beqqali, A.; Abdel-Rehim, M. Bioanalytical Method Development and Validation: Critical Concepts and Strategies. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1043. https://doi.org/10.1016/j.jchromb.2016.09.028.
- [2] Giri, P.; Patel, N.; Joshi, V.; Giri, S.; Srinivas, N. R. Incurred Sample Reanalysis in Drug Discovery Bioanalysis. *Biomedical Chromatography*, 2019, 33 (3). https://doi.org/10.1002/bmc.4430.
- [3] Swain, K.; Pattnaik, S.; Yeasmin, N.; Mallick, S. Preclinical Evaluation of Drug in Adhesive Type Ondansetron Loaded Transdermal Therapeutic Systems. Eur J Drug Metab Pharmacokinet, 2011, 36 (4), 237–241. https://doi.org/10.1007/s13318-011-0053.
- [4] Veneziano, M. Bioanalysis and Pharmacokinetic Studies. Int J Pharmacokinet, 2021, 5 (1). https://doi.org/10.4155/ipk-2020-0005.

- [5] Yadav, Y. C.; Pattnaik, S.; Swain, K. Curcumin Loaded Mesoporous Silica Nanoparticles: Assessment of Bioavailability and Cardioprotective Effect. *Drug Dev Ind Pharm*, 2019, 45 (12), 1889–1895. https://doi.org/10.1080/03639045.2019.1672717.
- [6] Kole, P. L.; Venkatesh, G.; Kotecha, J.; Sheshala, R. Recent Advances in Sample Preparation Techniques for Effective Bioanalytical Methods. *Biomedical Chromatography*. 2011. https://doi.org/10.1002/bmc.1560.
- [7] Suzaei, F. M.; Daryanavard, S. M.; Abdel-Rehim, A.; Bassyouni, F.; Abdel-Rehim, M. Recent Molecularly Imprinted Polymers Applications in Bioanalysis. *Chemical Papers*. 2023. https://doi.org/10.1007/s11696-022-02488-3.
- [8] Drexler, D. M.; McNaney, C. A.; Wang, Y.; Huang, X.; Reily, M. D. The Utility of QNMR to Improve Accuracy and Precision of LC-MS Bioanalysis. *J Appl Bioanal*, 2018, 4 (1). https://doi.org/10.17145/jab.18.005.
- [9] Findlay, J. W. A.; Smith, W. C.; Lee, J. W.; Nordblom, G. D.; Das, I.; Desilva, B. S.; Khan, M. N.; Bowsher, R. R. Validation of Immunoassays for Bioanalysis: A Pharmaceutical Industry Perspective. *J Pharm Biomed Anal*, 2000, 21 (6). https://doi.org/10.1016/S0731-7085(99)00244-7.
- [10] Jiang, D.; Yuan, L. Microflow LC-MS/MS to Improve Sensitivity for Antisense Oligonucleotides Bioanalysis: Critical Role of Sample Cleanness. *Bioanalysis*, 2022, 14 (21). https://doi.org/10.4155/bio-2022-0201.
- [11] Dubey, R.; Bhushan, R. Specificity versus Selectivity: Twin Aims of Aptasensors in Bioanalysis. *Bioanalysis*. 2018. https://doi.org/10.4155/bio-2018-0188.
- [12] Ettre, L. S. Chromatography: The Separation Technique of the 20th Century. Chromatographia. 2000. https://doi.org/10.1007/BF02490689.
- [13] Zheng, J.; Huang, C.; Wang, S. Challenging Pharmaceutical Analyses by Gas Chromatography with Vacuum Ultraviolet Detection. *J Chromatogr A*, 2018, 1567. https://doi.org/10.1016/j.chroma.2018.06.064.
- [14] Knol, W. C.; Pirok, B. W. J.; Peters, R. A. H. Detection Challenges in Quantitative Polymer Analysis by Liquid Chromatography. *Journal of Separation Science*. 2021. https://doi.org/10.1002/jssc.202000768.
- [15] Bhati, C.; Minocha, N.; Purohit, D.; Kumar, S.; Makhija, M.; Saini, S.; Kaushik, D.; Pandey, P. High Performance Liquid Chromatography: Recent Patents and Advancement. *Biomedical and Pharmacology Journal*, 2022, 15 (2). https://doi.org/10.13005/bpj/2411.
- [16] Ramon, M. A.; Fanali, C.; Della Posta, S.; D'Orazio, G.; Fanali, S. Nano-Liquid Chromatography. In Liquid Chromatography: Fundamentals and Instrumentation: Volume 1, Third Edition; 2023; Vol. 1. https://doi.org/10.1016/B978-0-323-99968-7.00028-X.
- [17]-, N. T. S.; -, V. D. S. Ultra Performance Liquid Chromatography (UPLC) -A Review. *International Journal For Multidisciplinary Research*, 2023, 5 (2). https://doi.org/10.36948/ijfmr.2023.v05i02.1868.
- [18] Choudhari, S. M.; Ananthanarayan, L.; Singhal, R. S. Purification of Lycopene by Reverse Phase Chromatography. Food Bioproc Tech, 2009, 2 (4). https://doi.org/10.1007/s11947-008-0054-1.
- [19] Bihan, D. G.; Rydzak, T.; Wyss, M.; Pittman, K.; McCoy, K. D.; Lewis, I. A. Method for Absolute Quantification of Short Chain Fatty Acids via Reverse Phase Chromatography Mass Spectrometry. *PLoS One*, 2022, 17 (4 April). https://doi.org/10.1371/journal.pone.0267093.
- [20] Molnar, I.; Horvath, C. Reverse Phase Chromatography of Polar Biological Substances: Separation of Catechol Compounds by High Performance Liquid Chromatography. Clin Chem, 1976, 22 (9). https://doi.org/10.1093/clinchem/22.9.1497.
- [21] Gaborieau, M.; Castignolles, P. Size-Exclusion Chromatography (SEC) of Branched Polymers and Polysaccharides. *Anal Bioanal Chem*, 2011, 399 (4). https://doi.org/10.1007/s00216-010-4221-7.
- [22] Niezen, L. E.; Kruijswijk, J. D.; van Henten, G. B.; Pirok, B. W. J.; Staal, B. B. P.; Radke, W.; Philipsen, H. J. A.; Somsen, G. W.; Schoenmakers, P. J. Principles and Potential of Solvent Gradient Size-Exclusion Chromatography for Polymer Analysis. *Anal Chim Acta*, 2023, 1253. https://doi.org/10.1016/j.aca.2023.341041.
- [23] Hong, P.; Koza, S.; Bouvier, E. S. P. A Review Size-Exclusion Chromatography for the Analysis of Protein Biotherapeutics and Their Aggregates. *Journal of Liquid Chromatography and Related Technologies*. 2012. https://doi.org/10.1080/10826076.2012.743724.
- [24] Santini, F.; Chopra, I. J.; Solomon, D. H.; Chua Teco, G. N. Evidence That the Human Placental 5-Monodeiodinase Is a Phospholipid-Requiring

- Enzyme. *Journal of Clinical Endocrinology and Metabolism*, **1992**, 74 (6). https://doi.org/10.1210/jcem.74.6.1592882.
- [25] Coughtrie, M. W. H.; Burchell, B.; Bend, J. R. Purification and Properties of Rat Kidney UDP-Glucuronosyltransferase. *Biochem Pharmacol*, 1987, 36 (2). https://doi.org/10.1016/0006-2952(87)90696-4.
- [26] Rodriguez, E. L.; Poddar, S.; Iftekhar, S.; Suh, K.; Woolfork, A. G.; Ovbude, S.; Pekarek, A.; Walters, M.; Lott, S.; Hage, D. S. Affinity Chromatography: A Review of Trends and Developments over the Past 50 Years. *Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences*. 2020. https://doi.org/10.1016/j.jchromb.2020.122332.
- [27] Hage, D. S.; Anguizola, J. A.; Bi, C.; Li, R.; Matsuda, R.; Papastavros, E.; Pfaunmiller, E.; Vargas, J.; Zheng, X. Pharmaceutical and Biomedical Applications of Affinity Chromatography: Recent Trends and Developments. *Journal of Pharmaceutical and Biomedical Analysis*. 2012. https://doi.org/10.1016/j.jpba.2012.01.004.
- [28] Hubbard, M. A.; Luyet, C.; Kumar, P.; Elvati, P.; Van Epps, J. S.; Violi, A.; Kotov, N. A. Chiral Chromatography and Surface Chirality of Carbon Nanoparticles. *Chirality*, 2022, 34 (12). https://doi.org/10.1002/chir.23507.
- [29] Asnin, L. D.; Stepanova, M. V. Van't Hoff Analysis in Chiral Chromatography. *Journal of Separation Science*. 2018. https://doi.org/10.1002/jssc.201701264.
- [30] Pirok, B. W. J.; Gargano, A. F. G.; Schoenmakers, P. J. Optimizing Separations in Online Comprehensive Two-Dimensional Liquid Chromatography. *Journal of Separation Science*. 2018. https://doi.org/10.1002/jssc.201700863.
- [31] Kolomnikov, I. G.; Efremov, A. M.; Tikhomirova, T. I.; Sorokina, N. M.; Zolotov, Y. A. Early Stages in the History of Gas Chromatography. J Chromatogr A, 2018, 1537. https://doi.org/10.1016/j.chroma.2018.01.006.
- [32] Frick, A. A.; Chidlow, G.; Lewis, S. W.; van Bronswijk, W. Investigations into the Initial Composition of Latent Fingermark Lipids by Gas Chromatography-Mass Spectrometry. Forensic Sci Int, 2015, 254. https://doi.org/10.1016/j.forsciint.2015.06.032.
- [33] Zeki, Ö. C.; Eylem, C. C.; Reçber, T.; Kır, S.; Nemutlu, E. Integration of GC-MS and LC-MS for Untargeted Metabolomics Profiling. *Journal of Pharmaceutical and Biomedical Analysis*. 2020. https://doi.org/10.1016/j.jpba.2020.113509.
- [34] Lach, S.; Jurczak, P.; Karska, N.; Kubiś, A.; Szymańska, A.; Rodziewicz-Motowidło, S. Spectroscopic Methods Used in Implant Material Studies. *Molecules*. 2020. https://doi.org/10.3390/molecules25030579.
- [35] Mansour, F. R.; Abdallah, I. A.; Bedair, A.; Hamed, M. Analytical Methods for the Determination of Quercetin and Quercetin Glycosides in Pharmaceuticals and Biological Samples. Crit Rev Anal Chem, 2023. https://doi.org/10.1080/10408347.2023.2269421.
- [36] Panda, D. S.; Alruwaili, N. K.; Pattnaik, S.; Swain, K. Ibuprofen Loaded Electrospun Polymeric Nanofibers: A Strategy to Improve Oral Absorption. Acta Chim Slov, 2022, 69 (2), 483–488. https://doi.org/10.17344/ACSI.2022.7370.
- [37] Mallick, S.; Pattnaik, S.; Swain, K.; De, P. K.; Mondal, A.; Ghoshal, G.; Saha, A. Interaction Characteristics and Thermodynamic Behaviour of Gatifloxacin by Aluminium Hydroxide. *Drug Dev Ind Pharm*, 2007, 33 (5), 535–541. https://doi.org/10.1080/03639040601050130.
- [38] Mallick, S.; Pattnaik, S.; Swain, K.; De, P. K.; Saha, A.; Mazumdar, P.; Ghoshal, G. Physicochemical Characterization of Interaction of Ibuprofen by Solid-State Milling with Aluminum Hydroxide. *Drug Dev Ind Pharm*, 2008, 34 (7), 726–734. https://doi.org/10.1080/03639040801901868.
- [39] Ducrocq, M.; Morel, M. H.; Anton, M.; Micard, V.; Guyot, S.; Beaumal, V.; Solé-Jamault, V.; Boire, A. Biochemical and Physical—Chemical Characterisation of Leaf Proteins Extracted from Cichorium Endivia Leaves. Food Chem, 2022, 381. https://doi.org/10.1016/j.foodchem.2022.132254.
- [40] Hota, S. S.; Pattnaik, S.; Mallick, S. Formulation and Evaluation of Multidose Propofol Nanoemulsion Using Statistically Designed Experiments. *Acta Chim Slov*, https://doi.org/10.17344/acsi.2019.5311.
- [41] Pattnaik, S.; Swain, K.; Rao, J. V.; Varun, T.; Prusty, K. B.; Subudhi, S. K. Aceclofenac Nanocrystals for Improved Dissolution: Influence of Polymeric Stabilizers. *RSC Adv*, **2015**, 5 (112), 91960–91965. https://doi.org/10.1039/c5ra20411a.
- [42] Pattnaik, S.; Swain, K.; Manaswini, P.; Divyavani, E.; Rao, J. V.; Talla, V.; Subudhi, S. K. Fabrication of Aceclofenac Nanocrystals for Improved Dissolution: Process Optimization and Physicochemical Characterization. J

- *Drug Deliv Sci Technol*, **2015**, 29, 199–209. https://doi.org/10.1016/j.jddst.2015.07.021.
- [43] Mousa, M. A. A.; Wang, Y.; Antora, S. A.; Al-qurashi, A. D.; Ibrahim, O. H. M.; He, H. J.; Liu, S.; Kamruzzaman, M. An Overview of Recent Advances and Applications of FT-IR Spectroscopy for Quality, Authenticity, and Adulteration Detection in Edible Oils. Critical Reviews in Food Science and Nutrition. 2022. https://doi.org/10.1080/10408398.2021.1922872.
- [44] Coelho, S. C.; Rangel, M.; Pereira, M. C.; Coelho, M. A. N.; Ivanova, G. Structural Characterization of Functionalized Gold Nanoparticles for Drug Delivery in Cancer Therapy: A NMR Based Approach. *Physical Chemistry Chemical Physics*, 2015, 17 (29). https://doi.org/10.1039/c5cp02717a.
- [45] Barskiy, D. A.; Put, P.; Pustelny, S.; Budker, D.; Druga, E.; Sjolander, T. F.; Pines, A. Zero- To Ultralow-Field Nmr Spectroscopy of Small Biomolecules. *Anal Chem*, 2021, 93 (6). https://doi.org/10.1021/acs.analchem.0c04738.
- [46] Klukowski, P.; Riek, R.; Güntert, P. Rapid Protein Assignments and Structures from Raw NMR Spectra with the Deep Learning Technique ARTINA. Nat Commun, 2022, 13 (1). https://doi.org/10.1038/s41467-022-33879-5.
- [47] Hu, Y.; Cheng, K.; He, L.; Zhang, X.; Jiang, B.; Jiang, L.; Li, C.; Wang, G.; Yang, Y.; Liu, M. NMR-Based Methods for Protein Analysis. *Anal Chem*, 2021, 93 (4). https://doi.org/10.1021/acs.analchem.0c03830.
- [48] Yamaoki, Y.; Nagata, T.; Sakamoto, T.; Katahira, M. Recent Progress of In-Cell NMR of Nucleic Acids in Living Human Cells. *Biophysical Reviews*. 2020. https://doi.org/10.1007/s12551-020-00664-x.
- [49] Atkinson, R. A. NMR of Proteins and Nucleic Acids. *Nuclear Magnetic Resonance*, 2021, 46. https://doi.org/10.1039/9781788010665-00250.
- [50] Reif, B.; Ashbrook, S. E.; Emsley, L.; Hong, M. Solid-State NMR Spectroscopy. Nature Reviews Methods Primers. 2021. https://doi.org/10.1038/s43586-020-00002-1.
- [51]d'Avignon, D. A.; Ge, X. In Vivo NMR Investigations of Glyphosate Influences on Plant Metabolism. *Journal of Magnetic Resonance*, 2018, 292. https://doi.org/10.1016/j.jmr.2018.03.008.
- [52] Bastawrous, M.; Jenne, A.; Tabatabaei Anaraki, M.; Simpson, A. J. In-Vivo NMR Spectroscopy: A Powerful and Complimentary Tool for Understanding Environmental Toxicity. *Metabolites*. 2018. https://doi.org/10.3390/metabo8020035.
- [53] Bravo-Veyrat, S.; Hopfgartner, G. Mass Spectrometry Based High-Throughput Bioanalysis of Low Molecular Weight Compounds: Are We Ready to Support Personalized Medicine? *Anal Bioanal Chem*, 2022, 414 (1), 181. https://doi.org/10.1007/S00216-021-03583-2.
- [54] Klont, F.; Hopfgartner, G. Mass Spectrometry Based Approaches and Strategies in Bioanalysis for Qualitative and Quantitative Analysis of Pharmaceutically Relevant Molecules. *Drug Discov Today Technol*, 2021, 40, 64–68. https://doi.org/10.1016/J.DDTEC.2021.10.004.
- [55] Meher, A. K.; Chen, Y.-C. Electrospray Modifications for Advancing Mass Spectrometric Analysis. *Mass Spectrometry*, 2017, 6 (Spec Iss), S0057– S0057. https://doi.org/10.5702/MASSSPECTROMETRY.S0057.
- [56] Armstrong, D. W.; Zhang, L. K.; He, L.; Gross, M. L. Ionic Liquids as Matrixes for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. *Anal Chem*, 2001, 73 (15), 3679–3686. https://doi.org/10.1021/AC010259F.
- [57] Zhu, X.; Xu, T.; Peng, C.; Wu, S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem, 2021, 9. https://doi.org/10.3389/FCHEM.2021.782432.
- [58] Nagana Gowda, G. A.; Djukovic, D. Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges. *Methods Mol Biol*, 2014, 1198, 3. https://doi.org/10.1007/978-1-4939-1258-2_1.
- [59] Neagu, A. N.; Jayathirtha, M.; Baxter, E.; Donnelly, M.; Petre, B. A.; Darie, C. C. Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. *Molecules*, 2022, 27 (8). https://doi.org/10.3390/MOLECULES27082411.
- [60] Grabarics, M.; Lettow, M.; Kirschbaum, C.; Greis, K.; Manz, C.; Pagel, K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. *Chem Rev*, 2022, 122 (8), 7840. https://doi.org/10.1021/ACS.CHEMREV.1C00380.
- [61] Tian, X.; Permentier, H. P.; Bischoff, R. Chemical Isotope Labeling for Quantitative Proteomics. *Mass Spectrom Rev*, 2023, 42 (2), 546. https://doi.org/10.1002/MAS.21709.

- [62] Wang, Y.; Wondisford, F. E.; Song, C.; Zhang, T.; Su, X. Metabolic Flux Analysis—Linking Isotope Labeling and Metabolic Fluxes. *Metabolites*, 2020, 10 (11), 1–21. https://doi.org/10.3390/METABO10110447.
- [63] Cutsail, G. E.; Debeer, S. Challenges and Opportunities for Applications of Advanced X-Ray Spectroscopy in Catalysis Research. ACS Catalysis. 2022. https://doi.org/10.1021/acscatal.2c01016.
- [64] Zimmermann, P.; Peredkov, S.; Abdala, P. M.; DeBeer, S.; Tromp, M.; Müller, C.; van Bokhoven, J. A. Modern X-Ray Spectroscopy: XAS and XES in the Laboratory. *Coordination Chemistry Reviews*. 2020. https://doi.org/10.1016/j.ccr.2020.213466.
- [65] Colboc, H.; Bazin, D.; Reguer, S.; Lucas, I. T.; Moguelet, P.; Amode, R.; Jouanneau, C.; Soria, A.; Chasset, F.; Amsler, E.; et al. Chemical Characterization of Inks in Skin Reactions to Tattoo. *J Synchrotron Radiat*, 2022, 29. https://doi.org/10.1107/S1600577522008165.
- [66] Anné, J.; Canoville, A.; Edwards, N. P.; Schweitzer, M. H.; Zanno, L. E. Independent Evidence for the Preservation of Endogenous Bone Biochemistry in a Specimen of Tyrannosaurus Rex. *Biology (Basel)*, 2023, 12 (2). https://doi.org/10.3390/biology12020264.
- [67] Anderson, C. M.; Jain, S. S.; Silber, L.; Chen, K.; Guha, S.; Zhang, W.; McLaughlin, E. C.; Hu, Y.; Tanski, J. M. Synthesis and Characterization of Water-Soluble, Heteronuclear Ruthenium(III)/Ferrocene Complexes and Their Interactions with Biomolecules. *J Inorg Biochem*, 2015, 145. https://doi.org/10.1016/j.jinorgbio.2014.12.017.
- [68] Kopittke, P. M.; Punshon, T.; Paterson, D. J.; Tappero, R. V.; Wang, P.; Pax, F.; van der Ent, A.; Lombi, E. Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants1[OPEN]. Plant Physiology. 2018. https://doi.org/10.1104/PP.18.00759.
- [69] Gianoncelli, A.; Bonanni, V.; Gariani, G.; Guzzi, F.; Pascolo, L.; Borghes, R.; Billè, F.; Kourousias, G. Soft X-Ray Microscopy Techniques for Medical and Biological Imaging at Twinmic—Elettra. *Applied Sciences (Switzerland)*, 2021, 11 (16). https://doi.org/10.3390/app11167216.
- [70] Withers, P. J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C. K.; Maire, E.; Manley, M.; Du Plessis, A.; Stock, S. R. X-Ray Computed Tomography. *Nature Reviews Methods Primers*. 2021. https://doi.org/10.1038/s43586-021-00015-4.
- [71] Villarraga-Gómez, H.; Herazo, E. L.; Smith, S. T. X-Ray Computed Tomography: From Medical Imaging to Dimensional Metrology. *Precision Engineering*. 2019. https://doi.org/10.1016/j.precisioneng.2019.06.007.
- [72] Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A Comprehensive Review on Raman Spectroscopy Applications. *Chemosensors*. 2021. https://doi.org/10.3390/chemosensors9090262.
- [73] Chan, J.; Fore, S.; Wachsmann-Hogiu, S.; Huser, T. Raman Spectroscopy and Microscopy of Individual Cells and Cellular Components. *Laser and Photonics Reviews*. 2008. https://doi.org/10.1002/lpor.200810012.
- [74] Moura, C. C.; Tare, R. S.; Oreffo, R. O. C.; Mahajan, S. Raman Spectroscopy and Coherent Anti-Stokes Raman Scattering Imaging: Prospective Tools for Monitoring Skeletal Cells and Skeletal Regeneration. *Journal of the Royal Society Interface*. 2016. https://doi.org/10.1098/rsif.2016.0182.
- [75] Whitmore, L.; Wallace, B. A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. *Biopolymers*, 2008, 89 (5). https://doi.org/10.1002/bip.20853.
- [76] Gray, D. M.; Ratliff, R. L.; Vaughan, M. R. Circular Dichroism Spectroscopy of DNA. *Methods Enzymol*, 1992, 211 (C). https://doi.org/10.1016/0076-6879(92)11021-A.
- [77] Corrêa, D.; Ramos, C. The Use of Circular Dichroism Spectroscopy to Study Protein Folding, Form and Function. African J Biochem Res, 2009, 3 (5).
- [78] Porra, R. J.; Thompson, W. A.; Kriedemann, P. E. Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of the Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy. BBA - Bioenergetics, 1989, 975 (3). https://doi.org/10.1016/S0005-2728(89)80347-0.
- [79] Jeffery, J.; Frank, A. R.; Hockridge, S.; Stosnach, H.; Costelloe, S. J. Method for Measurement of Serum Copper, Zinc and Selenium Using Total Reflection X-Ray Fluorescence Spectroscopy on the PICOFOX Analyser: Validation and Comparison with Atomic Absorption Spectroscopy and Inductively Coupled Plasma Mass Spectrometry. *Ann Clin Biochem*, 2019, 56 (1). https://doi.org/10.1177/0004563218793163.

- [80] Rasheed, A. S.; Qassim, A. W.; Abdulrahman, S. K. Indirect Pharmaceutical and Organic Compounds Analysis by Atomic Absorption Spectroscopy. *International Journal of Drug Delivery Technology*. 2022. https://doi.org/10.25258/ijddt.12.3.89.
- [81] Yasutake, A.; Nagano, M.; Nakano, A. Simple Method for Methylmercury Estimation in Biological Samples Using Atomic Absorption Spectroscopy. *Journal of Health Science*, 2005, 51 (2). https://doi.org/10.1248/jhs.51.220.
- [82] Delves, H. T. Atomic Absorption Spectroscopy in Clinical Analysis. Annals of Clinical Biochemistry. 1987. https://doi.org/10.1177/000456328702400601.
- [83] Jaiswal, A. K.; Mohrana, M.; Krishna, P. H. R.; Moon, D. V.; Millo, T.; Murty, O. P. Atomic Absorption Spectrometry - A Review. *Journal of Forensic Medicine and Toxicology*. 2010.
- [84] Rozenfeld, J. H. K.; Duarte, E. L.; Oliveira, T. R.; Lamy, M. T. Structural Insights on Biologically Relevant Cationic Membranes by ESR Spectroscopy. *Biophysical Reviews*. 2017. https://doi.org/10.1007/s12551-017-0304-4.
- [85] Kohno, M. Applications of Electron Spin Resonance Spectrometry for Reactive Oxygen Species and Reactive Nitrogen Species Research. J Clin Biochem Nutr. 2010, 47 (1), 1. https://doi.org/10.3164/JCBN.10-13R.
- [86] Waddington, D. E. J.; Sarracanie, M.; Salameh, N.; Herisson, F.; Ayata, C.; Rosen, M. S. An Overhauser-Enhanced-MRI Platform for Dynamic Free Radical Imaging in Vivo. NMR Biomed, 2018, 31 (5). https://doi.org/10.1002/nbm.3896.
- [87] Ikeya, M. Use of Electron Spin Resonance Spectrometry in Microscopy, Dating and Dosimetry A Review. Analytical Sciences, 1989, 5 (1). https://doi.org/10.2116/analsci.5.5.
- [88] Clark, K. D.; Zhang, C.; Anderson, J. L. Sample Preparation for Bioanalytical and Pharmaceutical Analysis. *Anal Chem*, 2016, 88 (23), 11262–11270. https://doi.org/10.1021/ACS.ANALCHEM.6B02935/ASSET/IMAGES/L ARGE/AC-2016-02935T_0005.JPEG.
- [89] Rezaee, M.; Khalilian, F.; Pourjavid, M. R.; Seidi, S.; Chisvert, A.; Abdel-Rehim, M. Extraction and Sample Preparation. *Int J Anal Chem*, 2015, 2015. https://doi.org/10.1155/2015/397275.
- [90] Thurow, K. Strategies for Automating Analytical and Bioanalytical Laboratories. Anal Bioanal Chem, 2023, 415 (21), 5057–5066. https://doi.org/10.1007/S00216-023-04727-2/FIGURES/3.
- [91] Liakh, I.; Pakiet, A.; Sledzinski, T.; Mika, A. Modern Methods of Sample Preparation for the Analysis of Oxylipins in Biological Samples. *Molecules*, 2019, 24 (8). https://doi.org/10.3390/molecules24081639.
- [92] Khatibi, S. A.; Hamidi, S.; Siahi-Shadbad, M. R. Application of Liquid-Liquid Extraction for the Determination of Antibiotics in the Foodstuff: Recent Trends and Developments. *Critical Reviews in Analytical Chemistry*. 2022. https://doi.org/10.1080/10408347.2020.1798211.
- [93] Salve, S.; Bahiram, Y.; Jadhav, A.; Rathod, R.; Tekade, R. K. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Critical Reviews in Analytical Chemistry. 2023. https://doi.org/10.1080/10408347.2021.1934651.
- [94] Vasconcelos, I.; Fernandes, C. Magnetic Solid Phase Extraction for Determination of Drugs in Biological Matrices. *TrAC - Trends in Analytical Chemistry*, 2017. https://doi.org/10.1016/j.trac.2016.11.011.
- [95] Watt, A. P.; Morrison, D.; Locker, K. L.; Evans, D. C. Higher Throughput Bioanalysis by Automation of a Protein Precipitation Assay Using a 96-Well Format with Detection by LC–MS/MS. *Anal Chem*, 2000, 72 (5), 979–984. https://doi.org/10.1021/AC9906633.
- [96] Polson, C.; Sarkar, P.; Incledon, B.; Raguvaran, V.; Grant, R. Optimization of Protein Precipitation Based upon Effectiveness of Protein Removal and Ionization Effect in Liquid Chromatography-Tandem Mass Spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2003, 785 (2), 263–275. https://doi.org/10.1016/S1570-0232(02)00914-5.
- [97] Prosen, H.; Zupančič-Kralj, L. Solid-Phase Microextraction. *TrAC Trends in Analytical Chemistry*, 1999, 18 (4), 272–282. https://doi.org/10.1016/S0165-9936(98)00109-5.
- [98] van de Merbel, N. C.; Brinkman, U. A. T. On-Line Dialysis as a Sample-Preparation Technique for Column Liquid Chromatography. *TrAC Trends in Analytical Chemistry*, 1993, 12 (6), 249–256. https://doi.org/10.1016/0165-9936(93)87064-5.