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ABSTRACT

Carboxylic acids have clearly been absent from the quantitative structure-property relationship literature. The studies of the quantitative structure–property 
relationships (QSPR) involve various chemometric methods in which the physico-chemical behavior of a compound is correlated with its structure represented 
by the structural indices. For example, QSPR methods are applied for the prediction of octanol-water partition coefficient of an organic compound. In this study, 
the relationship between the octanol/water coefficient partition and molecular descriptors was investigated. Also, the multiple linear-regression method based 
on QSPR methodology was applied to predict the Log P of saturated mono-carboxylic acids C1-C22. On the other hand, the relation [ Log P = - 0.426 ( Platt ) + 
0.190 ( V/ A°3 ) - 0.155 ( Max.P.A/ A°2 ) - 1.914 ( X ) - 1.576 ;  N = 22, R2 = 0.995 , F = 917.005, DW=1.391]  was generated for selected mono-carboxylic acids. 
The results of study indicated that the Platt, Randic, Volume and Maximum-Projection-Area descriptors have an important role in predicting the octanol/water 
coefficient partition of saturated monocarboxylic acids (C1- C22).
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INTRODUCTION

Carboxylic acids are pervasive in nature. They are frequently used 
to generate polymers, pharmaceuticals, solvents, esters and polyesters. 
Monocarboxylic acids are organic compounds that contain a carboxyl group. 
The combination of hydroxyl and carbonyl group form the functional group 
carboxyl. Carbonyl group of carboxylic acids is considerably different from 
its aldehydes or ketones sibling. However, when the hydroxyl group of a 
carboxylic acid is compared with that of alcohols or phenols, the same result 
can be achieved.

Carboxylic acids are polar molecules. Although 1-5 carbon carboxylic 
acids are soluble in water, the higher carbon carboxylic acids due to the 
increasing hydrophobic nature of the alkyl chain are rather soluble in less-polar 
solvents such as ethers and alcohols [1-3].

Log P (o/w) is considered as an essential property in new or problematic 
chemicals studies. It is mainly expressed as the n-octanol/water partition 
coefficient Log P(o/w) regarding the hydrophobicity of the compound. In 
recent years, it is known that the octanol/water partition coefficient has 
become a key parameter in the environmental science of organic compounds 
research. It should be noted that since the human body is made from water and 
lipids, therefore, Octanol/water partition coefficient is very important factor 
in biological, toxicological and environmental area [4-6]. As you know, the 
experimental methods of Log P, e. g. shake flask, reversed phase thin layer 
chromatography and high performance liquid chromatography (HPLC) are 
not always available. On the other hand, although there are many various 
software to calculate Log P of chemical compounds, almost all programs did 
not open the scheme and factors. Therefore, it seems that the use of statistic 
computational methods is essential.             

Quantitative structure-activity relationships (QSAR) and quantitative 
structure-property relationships (QSPR) involve the statistical methods by 
which biological activities or physicochemical properties are related with 
structural elements [7-11]. We have used the multiple linear regression 
(MLR) technique for obtaining an appropriate QSPR model. Multiple linear 
regression (MLR) technique which is based on the least-squares procedures 
are very often used to estimate the coefficients involved in the model equation 
[12-16]. In the present research, we propose QSPR model to predict Log P 
of saturated monocarboxylic acids by describing the chemical structure with 
the aid of molecular descriptors. Molecular descriptors such as topological 
indices, geometric indices, etc. are numerical representations of the chemical 
structure computed on the basis of the molecular graph [17-18]. The values of  
the experimental Log P of saturated monocarboxylic acids are often scarce, 
and hence, molecular descriptors provide powerful tools for modeling and 
extrapolating experimental data. 

MATERIALS AND METHODS

In this study, First, the structure and the values of experimental Log P 
of 22 different types of saturated carboxylic acids ( C1-C22 ) were taken 
from the literature ( Octanol-Water Partition Coefficients of Simple Organic 

Compounds, J. Phys. Chem. Ref. Data) [19]. Second, the used descriptors were 
obtained directly from the chemical structure and the values of topological 
descriptors , e. g.  Platt (Platt), Balaban (J), Randic (χ), Harary (H), Wiener 
(W), Wiener Polarity (WP ), Szeged ( Sz ) and HyperWiener (WW) indices 
[20-29] for 22 different types of saturated monocarboxylic acids ( C1-C22 
) were calculated using the web chemicalize program and also the values of 
geometric descriptors, e. g. the minimal projection area (Min.P.A/A°2), the 
maximal projection area (Max.P.A/A°2), the minimal z length (Min.z.L/A°), 
the maximal z length (Max.z. L/A°), the van der Waals volume (V/A°3), the 
dreiding energy ( E/kcalmol-1) for 22 compounds of mentioned training set 
were taken from book and web book [30]. Thirdly, the relationship between 
experimental  Log P with 14 different types of descriptors for mentioned 
saturated carboxylic acids using excel software was investigated and relevant 
equations were extracted. Fourth, the Log P estimation of used carboxylic acids 
was performed using SPSS software version 16 with multiple linear regression 
method and backward procedure. According to the key determining factors 
of this method, e. g. correlation coefficient (R), square correlation coefficient 
(R2), adjust square correlation coefficient (R2

Adjust), Fisher statistics (F), Durbin 
Watson (DW),…. the best topological indices were determined to predict Log 
P of used molecules.                                                                                                                        

RESULTS AND DISCUSSION

The values of experimental Log P of 22 different types of saturated 
monocarboxylic acids ( C1-C22 ) were shown in Table 1. 

The values of topological and geometric indices of all the mentioned 
compounds used were taken from the book and web book [24]. The relationship 
between experimental Log P and 14 different types of descriptors for saturated 
monocarboxylic acids mentioned was investigated using Excel software. ( see 
equations 1-14)

Log P = 0.2708 F - 2.4323 R2=0.9349 (1)

Log P = 1.1049 X - 2.6345 R2=0.9690 (2)

Log P = 1.9415 J - 2.9576 R2=0.0857 (3)

Log P = 0.1824 H - 1.2508 R2=0.9620 (4)

Log P = 0.0057 W + 0.9315 R2=0.8374 (5)

Log P = 0.0009 WW + 1.3382 R2=0.7592 (6)

Log P = 0.5146 WP - 1.4305 R2=0.8763 (7)

Log P = 0.0057 Sz - 0.9315 R2=0.8374 (8)

Log P = 0.2842 DE - 1.0465 R2=0.9628 (9)

Log P = 0.0323 V - 2.4511 R2=0.9742 (10)

Log P = 0.2667 Min.P.A - 4.5875 R2=0.6521 (11)
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Log P = 0.4206 Min.Z.L - 2.7585 R2=0.9459 (12)

Log P = 0.0954 Max.P.A - 2.6519 R2=0.9744 (13)

Log P = 1.5061 Max Z L - 6.1406 R2=0.4638 (14)

According to equations (1-14) and their square correlation coefficients 
(R2), it can be found that there is a significant linear correlation between Log P 
and some descriptors of this class of carboxylic acids. The following rank can 
be shown among Log P and descriptors:

Max.P.A > Volume > Randic > Deriding Energy > Harary > Min.Z.L 

> Platt. In equations (3, 5, 6, 7, 8, 11, 14), it can be seen that there is not 
a strong linear relationship between Max.Z.L, W, Min.P.A, Sz, WW, J, 
WP indices with Log P. In the next step, a multiple linear regression using 
seven independent variables and Log P as a dependent variable was made. 
Whether or not the regression model explains a statistically significant 
proportion of data was ascertained through the ANOVA Table of output 
based on the MLR model in terms of the relationship between coefficient 
partition and effective molecular indices. Then, different models were 
examined and the best model was defined using correlation coefficient 
(Pearson’s r) and Fisher’s coefficient and the associated significance values 
(Table.2).                                                                                                                                               

TABLE 1. The experimental Log P values of the saturated carboxylic acids (C1-C22) training set.

Carboxylic Acid Formula Log Pex Carboxylic Acid Formula Log Pex

Formic acid C1H2O2 -0.54 Octanoic acid C8H16O2 3.05

Acetic acid C2H4O2 -0.31 2-Ethylhexanoic acid C8H16O2 2.64

Hydroxyacetic acid C2H4O3 -1.11 2-Propylpentanoic acid C8H16O2 2.75

Propanoic Acid C3H6O2 0.25 2-propylhexanoic acid C9H18O2 3.01

2-Hydroxypropanoic acid C3H6O3 -0.62  Decanoic acid C10H20O2 4.09

Butanoic acid C4H802 0.79 2-Propylheptanoic acid C10H20O2 3.2

2-Hydroxybutanoic acid C4H803 -0.36  Dodecanoic acid C12H24O2 4.2

Pentanoic acid C5H10O2 1.39  Tetradecanoic acid C14H28O2 6.11

 Hexanoic acid C6H12 O2 1.88 Hexadecanoic acid C16H32O2 7.17

2-Ethylbutanoic acid C6H12 O2 1.68 Octadecanoic acid C18H36O2 8.23

 2-Methylpentanoic acid C6H12 O2 1.8 Eicosanoic acid C20H40O2 9.29

TABLE 2. Efficient output Paremeters of MLR Model in 4 models.

Model
Number Predictors

correlation 
coefficient

(R)

correlation 
coefficient  

Square
(R2)

correlation 
coefficient  

Square Adjust
(R2

Adjust)

STD. Error of 
the Estimate

(ơ)

Fisher 
Coefficient

(F)

Mean
Square
(MS)

Significant
(Sign)

1  Min.Z.L, H, DE Max.P.A, X, F, V, 0.998 0.996 0.994 0.21788 535.434 25.419 0.000

2 Min.Z.L, H, F, V  Max.P.A, X 0.998 0.996 0.995 0.21135 663.834 29.654 0.000

3 Min.Z.L, Max.P.A, X, F, V 0.998 0.996 0.995 0.21256 787.364 35.574 0.000

4 Max.P.A, X, F, V 0.998 0.995 0.994 0.22015 917.005 44.443 0.000

To estimate the Log P, four models were used with sig =0.000, F: 535.434 
< 663.834 < 787.364 <917.005, ơ: 0.21788 > 0.21135 >0.21256 > 0.22015, 
respectively. Finally, the best model with R= 0.998, R2 = 0.995, R2

Adjust = 0.994, 
F = 917.005, ơ =0.22015, MS=44.443, DW= 1.391 for estimating Log P was 
selected.

The significance is a coefficient which has been used in the statistical 
method. The more the significance level equal to zero, the lowest the 
significance level and the more meaningful the linear model will be. Therefore, 
a smaller significance level lead to a higher Fisher coefficient. As you know 
if the standard deviation of a set of data is close to zero, it indicates that the 
data have low dispersion and are close to the average, therefore, the values of 
standard deviation: 0.22015 in model 4 will be acceptable.  One of the methods 
to examin autocorrelation in the residuals from a statistical regression analysis 
is Durbin Watson (DW) statistic. The statistical coefficient of Durbin Watson 
test is limited between 0 and 4. The value of statistical coefficient equal to 
1.391 in this statistical  analysis indicates there is no caution using the proposed 

models. Finally, model 4, with balance between the highest the correlation 
coefficient ( R=0.998 ), the square correlation coefficient ( R2=0.995 ), 
the adjust square correlation coefficient (R2

Adjust=0.994), Fisher coefficient 
(F=917.005), standard Error of Estimate ( 0.22015 ) with significance at the 
0.000 level and the lowest number of descriptors was opted for further analysis, 
as reported in MLR Equation 15:

Log P = - 0.426 ( Platt ) + 0.190 ( V/ A°3 ) - 0.155 ( Max.P.A/ A°2 )-1.914 (X) 
-1.576

This equation has four common descriptors: Platt index, V/ A°3, Max.P.A/ 
A°2 and X index with high calibration statistics and prediction power.                                                                                 
The predicted Log P of this equation is shown in Table 3. It is worth mentioning 
that there are many partial differences between the experimental and predicted 
Log P of the model. The residuals of Log P are depicted in Table 3. This table 
also indicates how the model is reliable in any one of the molecules.                                                                                                                              
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TABLE 3. The predicted Log P, the Residule values,of the saturated monocarboxylic acids (C1-C22) training set

Carboxylic Acid Log PPred Residual Carboxylic Acid Log PPred Residual

Formic acid -0.38685 -0.15315 Octanoic acid 2.904783 0.145217

Acetic acid -0.31755 0.007546 2-Ethylhexanoic acid 2.654286 -0.01429

Hydroxyacetic  acid -1.06837 -0.04163 2-Propylpentanoic acid 2.700682 0.049318

Propanoic Acid 0.146445 0.103555 2-propylhexanoic acid 3.120591 -0.11059

2-Hydroxypropanoic acid -0.63462 0.014622  Decanoic acid 3.924567 0.165433

Butanoic acid 0.763115 0.026885 2-Propylheptanoic acid 3.593787 -0.39379

2-Hydroxybutanoic acid -0.44274 0.082738  Dodecanoic acid 4.871448 -0.67145

Pentanoic acid 1.254652 0.135348  Tetradecanoic acid 6.066341 0.043659

 Hexanoic acid 1.777962 0.102038 Hexadecanoic acid 7.11828 0.05172

2-Ethylbutanoic acid 1.601481 0.078519 Octadecanoic acid 8.196993 0.033007

 2-Methylpentanoic acid 1.700657 0.099343 Eicosanoic acid 9.044061 0.245939

Figure 1 shows the strong linear correlation between the experimental and the predicted Log P values obtained using equation 15.

Fig.1. The diagram of the Experimental Log P versus the Predicted Log P

Comparison between the experimental and the perdicted Log P values by MLR model indicate that the equation 15 might be used successfully 
to predict the Log P of studied carboxylic acids ( see figure .2).

Fig. 2. Comparison between the experimental and perdicted Log P 

The residual values show a fairly random pattern (see Figure 3). This random pattern indicates that a linear model provides a decent fit to the 
data, therefore, the result is very satisfactory.
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Fig. 3. The plot of experimental values against residuals of Log P

CONCLUSION

In present work, least square as a linear regression modeling method 
was used to construct a relation between coefficient partition of saturated 
monocarboxylic acids and their topological and geometric descriptors. 
The obtained results demonstrated that there are strong relationships 
between some molecular descriptors of this class carboxylic acids.                                                                                                                                     
According to the result, it can be seen that there is good correlation 
between the Log P discussed in this report with values of the 
Platt, V/A°3, Max.P.A/A°2 and X indices of mentioned molecules.                                                                                                                                     
The results of experimental for used molecules were compared with the results 
of multiple linear regression calculations and was represented that Platt, Randic 
topological indices and Volume, Maximum Projection Area are the best 
descriptors for predicting the values of Log P  of  saturated monocarboxylic 
acids. According to the literature search, to the best of our knowledge this is 
the first report on saturated monocarboxilic acids which their Log P in contrast 
to mentioned descriptors is prediced by SPSS software and linear multiple 
regression model.
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