JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 1 (2020): Journal of the Chilean Chemical Society
Original Research Papers

APPLICATION OF QUANTUM CHEMICAL, NOISE AND THE ELECTROCHEMICAL FREQUENCY MODULATION TO INVESTIGATE THE ADSORPTION AND CORROSION INHIBITION BEHAVIOR OF 2-AMINO-6-HYDROXYBENZOTHIAZOLE FOR STEEL API X80 IN ACIDIC SOLUTION

Iman Danaee
Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
Published March 16, 2020
Keywords
  • Noise,
  • Electrochemical frequency modulation,
  • DC Trends,
  • Power spectral density,
  • AFM,
  • Density functional theory
  • ...More
    Less
How to Cite
Danaee, I., & Nikparsa, P. (2020). APPLICATION OF QUANTUM CHEMICAL, NOISE AND THE ELECTROCHEMICAL FREQUENCY MODULATION TO INVESTIGATE THE ADSORPTION AND CORROSION INHIBITION BEHAVIOR OF 2-AMINO-6-HYDROXYBENZOTHIAZOLE FOR STEEL API X80 IN ACIDIC SOLUTION. Journal of the Chilean Chemical Society, 65(1), 4708-4716. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1017

Abstract

Different theoretical, electrochemical and surface techniques were applied to study the corrosion inhibition effects of 2-Amino-6-hydroxybenzothiazole in 5% HCl solution. The density functional theory was carried out and quantum chemical factors like the energy gap, energy of highest occupied molecular orbital, the energy of lowest unoccupied molecular orbital, the fraction of electron transferred, and Mulliken charges have been calculated. In addition, according to quantum calculation, S atom in 2-Amino-6-hydroxybenzothiazole indicated more tendency for electrophilic attack in adsorption. The main reason for high inhibition efficiencies in very low concentrations is the planar and simplicity of inhibitor structure which leads to increasing the efficiency of adsorption by functional group especially sulfur. Electrochemical frequency modulation and potentiodynamic polarization indicated that this material has excellent inhibiting features in very low concentrations. The influence of DC trend on the explanation of electrochemical noise data was evaluated by polynomial fitting and the optimum polynomial order m=4 was obtained. Noise resistance and the inhibition efficiency was calculated and compared in different methods. The theory of shot noise in frequency domain was used to obtain the electrochemical event charge. The corroded surface of steel in the absence and existence of thiazole compound was studied by Atomic force microscopy. 

1017.jpg

References

  1. I.B. Obot, I. B. Onyeachu, J. Mol. Liq. 249, 83 (2018).
  2. I.B. Obot, N.K. Ankah, A.A. Sorour, Z.M. Gasem, K. Haruna, Sust. Mater. Technol. 14, 1 (2017).
  3. H. J. Habeeb, H. M. Luaibi, R. M. Dakhil, A. A. H. Kadhum, A. A. Al-Amiery, T. S. Gaaz, Results Phys. 8, 1260 (2018).
  4. A.M. Eldesoky, S.G. Nozha, Chin. J. Chem. Eng. 25, 1256 (2017).
  5. R.W. Bosch, J. Hubrecht, W.F. Bogaerts, B.C. Syrett, Corrosion 57, 60 (2001).
  6. M. H. Othman Ahmed, A. A. Al-Amiery, Y. K. Al-Majedy, A. A. H. Kadhum, T. S. Gaaz, Results Phys. 8, 728 (2018).
  7. H. J. Habeeb, H. M. Luaibi, T. A. Abdullah, R. M. Dakhil, A. A. Al-Amiery, Case Studies in Thermal Engineering 12, 64 (2018).
  8. C. Wang, L. Wu, F. Xue, R. Ma, W. Ke, J. Mater. Sci. Technol. 34, 1876 (2018).
  9. N. Palaniappan, L. Raju Chowhan, S. Jothi, I.G. Bosco, I.S. Cole, Surf. Interf. 6, 237 (2017).
  10. G. Golestani , M. Shahidi, D. Ghazanfari, Appl. Surf. Sci. 308, 347 (2014).
  11. Y.J. Tan, J. Corros. Sci. Eng. 1, 11 (1999).
  12. B.P. Markhali, R. Naderi, M. Mahdavian, J. Electroanal. Chem. 714–715, 56 (2014).
  13. R.C. Nascimento, L.B. Furtado, M. J. O.C. Guimarães, P. R. Seidl, J.C. Rocha, J.A.C. Ponciano, M.T.M. Cruz, J. Mol. Liq. 256, 548 (2018).
  14. K. Haruna, I.B. Obot, N.K. Ankah, A.A. Sorour, T.A. Saleh, J. Mol. Liq. 264, 515 (2018).
  15. E. Ituen, O. Akaranta, A. James, J. Taibah University for Science 11, 788 (2017).
  16. M.A. Hegazy, A.Y. El-Etre, M. El-Shafaie, K.M. Berry, J. Mol. Liq. 214, 347 (2016).
  17. M.A. Deyab, K. Eddahaoui, R. Essehli, T. Rhadfi, S. Benmokhtar, G. Mele, Desalination 383, 38 (2016).
  18. E. Ituen, O. Akaranta, A. James, J. Mol. Liq. 224, 408 (2016).
  19. E.B. Ituen, A.O. James, O. Akaranta, Egyptian J. Petroleum 26, 745 (2017).
  20. S. RameshKumar, I. Danaee, M. RashvandAvei, M. Vijayan, J. Mol. Liq. 212, 168 (2015).
  21. H. Nady, M.M. El-Rabiei, M.A. Migahed, M. Fathy, Z. Phys. Chem. 231, 1179 (2016).
  22. J. Dahdele, I. Danaee, G. R. Rashed, J. Chil. Chem. Soc. 61, 3025 (2016).
  23. N. Moussaoui, D. Zerouali, N. Bettahar, J. Chil. Chem. Soc. 61, 3018 (2016).
  24. N. K. Bakirhan, A. Asan, N. Colak, S. Sanli, J. Chil. Chem. Soc. 61, 3066 (2016).
  25. A. H. Ahmed, A. M. Hassan, H. A. Gumaa, B. H. Mohamed, A. M. Eraky, J. Chil. Chem. Soc. 63, 4180 (2018).
  26. S.S. Abd El-Rehim, M.A. Deyab, H.H. Hassan, A.M. Shaltot, Z. Phys. Chem. 231, 1573 (2017).
  27. A.R. Hoseizadeh, I. Danaee, M.H. Maddahy, Z. Phys. Chem. 227, 403 (2013).
  28. I. Danaee, M. Gholami, M. RashvandAvei, M.H. Maddahy, J. Ind. Eng. Chem. 26, 81 (2015).
  29. J.R. Macdonald, Solid State Ionics 13, 147 (1984).
  30. I. Danaee, S. Noori, Int. J. Hydrogen Energy 36, 12102 (2011).
  31. A. Becke, Phys. Rev. 38, 3098 (1988).
  32. D. Becke, J. Chem. Phys. 98, 5648 (1993).
  33. C. Lee, W. Yang, R. Parr, Phys. Rev. 37, 785 (1988).
  34. J. H. Al-Fahemi, M. Abdallah, E. A.M. Gad, B.A.A.L. Jahdaly, J. Mol. Liq. 222, 1157 (2016).
  35. M. Gholami, I. Danaee, M. Maddahy, M. RashvandAvei, Ind. Eng. Chem. Res. 52, 14875 (2013).
  36. A.R. Hoseinzadeh, I. Danaee, M.H. Maddahy, J. Mater. Sci. Technol. 29, 884 (2013).
  37. M.A. Amin, S.S. Abd El-Rehim, E.E.F. El-Sherbini, R.S. Bayyomi, Electrochim. Acta, 52, 3588 (2007).
  38. N. Labjar, M. Lebrini, F. Bentiss, N. Chihib, S. El Hajjaji, C. Jama, Mater. Chem. Phys. 119, 330 (2010).
  39. A. R. Hosein Zadeh, I. Danaee, M. H. Maddahy, J. Mater. Sci. Technol., 29, 884 (2013).
  40. A. R. Hosein Zadeh, I. Danaee, M. H. Maddahy, M. RashvandAvei, Chem. Eng. Comm., 201, 380 (2014).
  41. I. Danaee, N. Bahramipanah, S. Moradi, S. Nikmanesh, J. Electrochem. Sci. Technol. 7, 153 (2016).
  42. A. Moteshakker, I. Danaee, J. Mater. Sci. Technol. 32, 282 (2016).
  43. H.R. Riazi, I. Danaee, M. Peykari, Met. Mater. Int. 19, 217 (2013).
  44. H. Gerengi, H.I. Sahin, Ind. Eng. Chem. Res. 51, 780 (2012).
  45. B.P. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, S.Y. Arman, Corros. Sci. 75, 269 (2013).
  46. E. Garc´ıa-Ochoa, J. Genescan, Surf. Coat. Technol. 184, 322 (2004).
  47. J. M. Sanches-Amaya, R.A. Cottis, F.G. Botana, Corros. Sci. 47, 3280 (2005).
  48. J.Y. Huang, Y.B. Qiu, X.P. Guo, Corros. Eng. Sci. Technol. 45, 288 (2010).
  49. D. Seifzadeh, H. Basharnavaz, A. Bezaatpour, Mater. Chem. Phys. 138, 794 (2013).
  50. U. Bertocci, F. Huet, R.P. Nogueira, P. Rousseau, Corrosion 58, 337 (2002).
  51. M. Hernandez, J. Genesca, Corros. Sci. 51, 499 (2009).
  52. H. Ashassi-Sorkhabi, D. Seifzadeh, J. Appl. Electrochem. 38, 1545 (2008).
  53. A.M. Homborg, T. Ting, X. Zhang, E.P.M. Van Westing, P.J. Oonincx, J.H.W. De Wite, J.M.C. Mole, Electrochim. Acta 70, 199 (2012).
  54. Ł. Lentka, J. Smulko, Measurement, 131, 569 (2019).
  55. M. A. Rubio, K. Bethune, A. Urquia, J. St-Pierre, Int. J. Hydrogen Energy, 41, 14991 (2016).
  56. D. Seifzadeh, A. Bezaatpour, R. Asadpour Joghani, Prot. Met. Phys. Chem. Surf. 52, 329 (2016).
  57. J. J. Perdomo, P. M. Singh, Corros. Rev. 20, 359 (2002).
  58. H. Jafari, I. Danaee, H. Eskandari, Trans. Indian Inst. Met. 68, 729 (2015).
  59. H. Jafari, I. Danaee, H. Eskandari, M. RashvandAvei, J. Mater. Sci. Technol. 30, 239 (2014).
  60. H.G. Hosseini, S.F.L. Mertens, M.R. Arshadi, Corros. Sci. 45, 1473 (2003).
  61. J. Flis, T. Zakroczymski, Electrochim. Acta 41, 1245 (1996).
  62. S. Deng, X. Li, H. Fu, Corros. Sci. 53, 822 (2011).
  63. I. Lukovits, E. Kalman, F. Zucchi, Corrosion 57, 3 (2001).
  64. P. Udhayakala, J. Chem. Pharm. Res. 6, 117 (2014).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP