JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 4 (2016): Journal of the Chilean Chemical Society
Original Research Papers

PREPARATION, IDENTIFICATION AND BIOLOGICAL PROPERTIES OF NEW FLUORIDE NANOCOMPOUNDS

Amir Lashgari
Department of Chemistry, Faculty of Science, Imam Khomeini International University
Shahriar Ghamami
Department of Chemistry, Faculty of Science, Imam Khomeini International University
Mojdeh Golzani
Department of Chemistry, Faculty of Science, Imam Khomeini International University
Guillermo Salgado Morán
Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción
Daniel Glossman Mitnik
Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados
Lorena Gerli Candia
Universidad Católica de la Santísima Concepción, Facultad de Ciencias, Departamento de Química Ambiental
Behnaz Abdolmaleki
Department of Chemistry, Faculty of Science, Khaje Nasir Toosi University of Technology
Published May 29, 2017
Keywords
  • Nanoparticle,
  • Nanofluoride,
  • Nanocomposite,
  • Antibacterial activity
How to Cite
Lashgari, A., Ghamami, S., Golzani, M., Salgado Morán, G., Glossman Mitnik, D., Gerli Candia, L., & Abdolmaleki, B. (2017). PREPARATION, IDENTIFICATION AND BIOLOGICAL PROPERTIES OF NEW FLUORIDE NANOCOMPOUNDS. Journal of the Chilean Chemical Society, 61(4). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/110

Abstract

Nanoparticles (NPs) of new fluoride (SrF2 and MgF2) nanocompounds were synthesized by the simple chemical method of precipitation in ethanol. Synthesis of the strontium fluoride (SrF2)-magnesium oxide (MgO) nanocomposite was achieved through the ultrasonic method. These prepared nanopowders were characterized through Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, Powder X-ray Diffraction (PXRD) and Scanning Electron Microscopy (SEM). FT-IR confirmed the purity of the synthesized fluoride NPs by evaluation of the vibrations, and UV–Visible showed the intense absorption peaks of NPs. PXRD analysis indicated the average of particle size, and SEM demonstrated a nearly spherical morphology of the NPs. The antibacterical properties of the nanopowders on Staphylococcus Aureus, Bacillus Subtilis and E. Aklay bacteria were studied, with the strongest effect by the magnesium fluoride (MgF2) NPs and the SrF2-MgO nanocomposite. 

References

  1. Ghamami, S.; Kazemzade Anari, S.; Bakhshi, M.; Lashgari, A.; Salgado- Morán, G.; Glossman-Mitnik, D., Preparation and Characterization of Cerium (III) Doped Captopril Nanoparticles and Study of their Photoluminescence Properties, Open Chemistry. 14 (1), 60–64, (2016).
  2. Lashgari, A.; Ghamami, S.; Bahrami, Z.; Shomossi, F.; Salgado-Morán, G.; Glossman-Mitnik, D.; Morphological Investigation and Fractal Properties of Realgar Nanoparticles, Journal of Nanomaterials, 130698, (2015).
  3. Murray, C.B.; Kagan, C..; Bawendi, M.G., Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci., 30, 545-610, (2000).
  4. Mazzola, L., Commercializing Nanotechnology, Nat. Biotechnol., 21, 1137-1143, (2003).
  5. Paull, R.; Wolfe, J.; Heber, P.T.; Sinkula, M., Investing in Nanotechnology, Nat. Biotechnol., 21, 1144-1147, (2003),
  6. Lashgari, A.; Ghammamy, S.; Gerli, L.; Salgado Morán, G., Synthesis and Study on Optical Reflection and Photoluminescent Properties of SiO2/AgO Nanocomposite., Advances in Environmental Biology, 8(21), 339-345, (2014).
  7. Rahmani, A.; Ghammamy, S..; Lashgari, A.; Salgado-Moran, G. Synthesis, Characterization and Properties of New Nano Halo Aluminates, Advances in Environmental Biology, 8(11), 725-729, (2014).
  8. Zambaux, M.; Bonneaux, F.; Gref, R.; Maincent, P.; Dellacherie, E.; Alonso, M.; Labrude, P.; Vigneron, C.J., Influence of Experimental Parameters on the Characteristics of Poly(lactic acid) Prepared by a Double Emulsion Method, Journal of Controlled Release. 50, 31-40, (1998).
  9. Burda, C.; Che, X.B.; Narayanan, R.; El-Sayed, M.A., Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev., 105, 1025- 1102, (2005).
  10. Cushing, B.L.; Kolesnichenko, V.L.; O’Connor, C.J., Recent Advances in the Liquid-Phase Synthesis of Inorganic Nanoparticles, Chem. Rev., 104, 3893-3946, (2004).
  11. Sun, C.Q., Size Dependence of Nanostructures: Impact of Bond Order Deficiency, Progress in Solid State Chemistry, 35, 1-159, (2007).
  12. Alivisatos, A.P., Semiconductor Clusters, Nanocrystals and Quantum Dots, Science, 271, 933-937, (1996).
  13. Hu, J.; Odom, T.W.; Lieber, C.M., Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Acc. Chem. Res., 32, 435-445, (1999).
  14. Brus, L.E.; Trautman, J.K., Nanocrystals and Nano-Optics, Philos. Trans. Soc. London Ser. A-Math Phys. Eng. Sci., 353, 313-321, (1995).
  15. Heath, J.R., Nanoscale Materials., Acc. Chem. Res., 32, 388, (1999).
  16. Marzban, S.; Khorrami, S.A., pH and Properties of Synthesized Barium Hexa-Ferrite by Co-precipitation Method., Int. J. Bio-Inorg. Hybd. Nanomat., 2(4), 491-494, (2013).
  17. Afsari, A.; Ranaei, M.A., Equal Channel Angular Pressing to Produce Ultrafine Pure Copper with Excellent Electrical and Mechanical Properties., Int. J. Nanosci. Nanotechnol., 10(4), 215-222, (2014).
  18. Ghasemi, A.; Davarpanah, A.M.; Ghadiri, M., Structure and Magnetic Properties of Oxide Nanoparticles of Fe-Co-Ni Synthesized by Co- Precipitation Method., Int. J. Nanosci. Nanotechnol., 8(4), 207-214, (2012).
  19. Khayat Sarkar, Z.; Khayat Sarkar, F., Selective Removal of Lead (II) Ion from Wastewater Using Superparamagnetic Monodispersed Iron Oxide (Fe3O4) Nanoparticles as an Effective Adsorbent., Int. J. Nanosci. Nanotechnol., 9(2), 109-114, (2013).
  20. Ghobadi, E.; Hemmati, M.; Khanbabaei, G.; Shojaei, M.; Asghari, M., Effect of Nanozeolite 13X on Thermal and Mechanical Properties of Polyurethane Nanocomposite Thin fFilms., Int. J. Nano Dimens., 6(2), 177-181, (2015).
  21. Pourasghar, A.; Kamarian, S., Mechanical Material Characterization of an Embedded Carbon Nanotube in Polymer Matrix by Employing an Equivalent Fiber., Int. J. Nano Dimens., 6(2), 167-175, (2015).
  22. Sergey I. Pokutnyi, Petr P. Gorbyk, New superatom in alkali-metal atoms, J Nanostruct Chem, 2015, 5 (1), 35–38.
  23. Jafari, V.; Allahverdi, A., Synthesis and Characterization of Colloidal Nanosilica via an Ultrasound Assisted Route Based on Alkali Leaching of Silica Fume., Int. J. Nanosci. Nanotechnol., 10(3), 145-152, (2014).
  24. J. Jasmine Ketzial, A. Samson Nesaraj, Chemical Precipitation of BaCeO3 – CeO2 Based Nano-ceramic Composite Oxide Materials and Their Physical Characterization, Int. J. Nanosci. Nanotechnol., 6(3), 79- 190, (2010).
  25. Pourahmad, A.; Sohrabnezhad, Sh.; Sadeghi, B., Removal of Heavy Metals from Aqueous Solution by Mordenite Nanocrystals, Int. J. Nanosci. Nanotechnol., 6(1), 31-41, (2010).
  26. Radhika, D.; Nesaraj, A.S., Chemical Precipitation and Characterization of Multicomponent Perovskite Oxide Nanoparticles - Possible Cathode Materials for Low Temperature Solid Oxide Fuel Cell, Int. J. Nano Dimens., 5(1), 1-10, (2014).
  27. Saberi, A.; Negahdari, Z.; Bouazza, S.; Willert-Porada, M., synthesis and Characterization of Crystalline Nanosized MgF2 Powder via Microemulsion Route, J. Fluorine Chem, 131, 1353–1355, (2010).
  28. Haber, J.; Wojciechowska, M., Surface structure and catalytic properties of the MoO3-MgF2 system, J. Catal., 110(1), 23–36, (1988).
  29. Hunt, G.R.; Perry, C.H., Ferguson, J., Surface Structure and Catalytic Properties of the MoO3-MgF2 Systems, Phys. Rev., 134, A688–A691, (1964).
  30. Nakamoto. K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, in Handbook of Vibrational Spectroscopy, John Wiley & Sons, 2006.
  31. Zhou, L.; Chen, D.; Luo, W.; Wang, Y.; Yu, Y.; Liu, F., Transparent Glass Ceramic Containing Er3+:CaF2 Nano-Crystals Prepared by Sol-Gel Method, Mater. Lett., 61, 3988-3990, (2007).
  32. Huang, X.H.; Chen, Z.H., A Study of Nanocrystalline NiFe2O4 in a Silica Matrix, Mater. Res. Bull., 40, 105-113, (2005).
  33. Lu, L.; Zhu, Y.; Li, F.; Wu, Z.; Chan, K.Y.; Lu, X., Carbon Titania Mesoporous Composite Whisker as Stable Supercapacitor Electrode Materials, J. Mater Chem, 20, 7646-7651, (2010).
  34. Kumar, G.A.; Chen, C.W.; Ballato, J.; Riman, R.E., Optical Characterization of Infrared Emitting Rare-Earth-Doped Fluoride Nanocrystals and their Transparent Nanocomposites, Chem. Mater., 19, 1523-1528, (2007).
  35. Shekhar Agnihotri, Soumyo Mukherji and Suparna Mukherji, Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy, RSC Adv., 2014, 4, 3974-3983].
  36. Pandurangappa, C.; Lakshminarasappa, B.N.; Nagabhushana, J., Synthesis and Characterization of CaF2 Nanocrystals, J. Alloys and Compd., 489, 592–595, (2010).
  37. Chow, L.C.; Sun, L.; Hockey, B., Properties of Nanostructured Hydroxyapatite Prepared by a Spray Drying Technique, J. Res. Natl. Inst. Stand. Technol., 109, 543-551, (2004).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP