JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 2 (2019): Journal of the Chilean Chemical Society
Original Research Papers

NATURAL COMPOUNDS: A SUSTAINABLE ALTERNATIVE TO THE PHYTOPATHOGENS CONTROL

María Fernanda Jiménez-Reyes
Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile
Héctor Carrasco
Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile.
Andrés F. Olea
Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile.
Evelyn Silva-Moreno
Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Instituto de Investigaciones Agropecuarias, INIA-La Platina
Published July 25, 2019
Keywords
  • fungus,
  • phytopathogen,
  • antifungal,
  • natural control,
  • plant extract,
  • essential oil,
  • secondary metabolite
  • ...More
    Less
How to Cite
Jiménez-Reyes, M. F., Carrasco, H., Olea, A. F., & Silva-Moreno, E. (2019). NATURAL COMPOUNDS: A SUSTAINABLE ALTERNATIVE TO THE PHYTOPATHOGENS CONTROL. Journal of the Chilean Chemical Society, 64(2). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1213

Abstract

Fungi are the primary infectious agents in plants causing significant economic losses in agroindustry. Traditionally, these pathogens have been treated with different synthetic fungicides such as hydroxianilides, anilinopyrimidines, and azoles, to name a few. However, the indiscriminate use of these chemicals has increased fungi resistance in plants. Natural products have been researched as a control, and an alternative to these synthetic fungicides since they are not harmful to health and contribute to the environment caring. This review describes plants extracts, essential oils, and active compounds or secondary metabolites as antifungal agents both, in vitro and in vivo. Active compounds have been recently described as the best candidates for the control of phytopathogenic fungi. When metabolized by plants, these compounds concentrations rely on the environmental conditions and pathogens incidence. However, one issue regarding the direct application of these preformed compounds in plants touch upon their low persistence in the environment, and their even lower bioavailability than synthetic fungicides. Hence the challenge is to develop useful formulations based on natural products to increase the compounds solubility facilitating thus their application in the field while maintaining their properties.

References

  1. Silva-Moreno E, Brito-Echeverría J, López M, Ríos J, Balic I, Campos-Vargas R, Polaco R. (2016). Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea. World J Microbiol Biotechnol, 32: 68-74.
  2. Talibi I, Askarne L, Boubaker H, Boudyach EH, Msanda F, Saadi B, Aoumar AAB. (2012). Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. Crop protection, 35: 41-46.
  3. Bajpai VK, Kang SC. (2012). In Vitro and In Vivo inhibition of plant pathogenic fungi by essential oil and extracts of Magnolia liliflora. Desr J Agr Sci Tech, 14: 845-856.
  4. Chang HT, Cheng YH, Wu CL, Chang ST, Chang TT, Su YC. (2008). Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana, florin leaf against plant pathogenic fungi. Bioresource Technol, 99: 6266-6270.
  5. Hof H. (2001). Guest Commentary: Critical Annotations to the use of azole antifungals for plant protection. Antimicrob Agents Chemother, 45(11): 2987-2990.
  6. Korres AMN, Buss DS, Ventura JA, Fernandes PMB. (2011). Candida krusei and Kloeckera apis inhibit the causal agent of pineapple fusariosis, Fusarium guttiforme. Fungal Biology, 115: 1251-1258.
  7. Díaz-Dellavalle P, Cabrera A, Alem D, Larrañaga P, Ferreira F, Dalla M. (2011). Research: Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chil J Agr Res, 71(2): 231-239.
  8. Lee SH, Chang KS, Su MS, Huang YS, Jang HD. (2007a). Effects of some Chinese medicinal plant extracts on five different fungi. Food Control, 18: 1547-1554.
  9. Satish S, Mohana DC, Ranhavendra MP, Raveesha KA. (2007). Antifungal activity of some plant extracts against important seed borne pathogens of Aspergillus sp. J Agr Sci Tech, 3(1): 109-119.
  10. Daniel CK, Lennox CL, Vries FA. (2015). In-vitro effects of garlic extracts on pathogenic fungi Botrytis cinerea, Penicillium expansum and Neofabraea alba. S Afr J Sci, 111(7/8): 1-8.
  11. Thompson L. (2002). Antifúngicos. Rev Chil Infectol, 19(1): 22-25. https://dx.doi.org/1 0.4067/S071 61 01 8200201 91 00003.
  12. Trösken ER, Scholz K, Lutz RW, Völkel W, Zarn JA, Lutz WK. (2004). Comparative assessment of the inhibition of recombinant human CYP19 (Aromatase) by azoles used in agriculture and as drugs for humans. Endocr Res, 30(3): 387-394.
  13. Tzortzakis NG, Economakis CD. (2007). Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innov Food Sci Emerg Technol, 8(2): 253-258.
  14. Daferera DJ, Ziogas BN, Polissiou MG. (2003). The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 22: 39- 44.
  15. Martínez JA. Natural fungicides obtained from plants. (2012). Chapter 1. In: Dhanasekaran D, Thajuddin N, Panneerselvam A (Eds). Fungicides for plant and animal diseases. Europe: InTech, 3-28.
  16. Wilson CL, Solar JM, El Ghaouth A, Wisniewski ME. (1997). Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis, 81(2): 204-210.
  17. Aala F, Kalsom U, Khodavandi A, Jamal, F. (2010). In vitro antifungal activity of allicin alone and in combination with two medications against six dermatophytic fungi. Afr J Microbiol Res, 4(5): 380-385.
  18. Jasso de Rodríguez D, Trejo-González FA, Rodríguez-García R, Díaz- Jimenez MLV, Sáenz-Galindo A, Hernández-Castillo FD, Villarreal-Quintanilla JA, Peña-Ramos FM. (2015). Antifungal activity in vitro of Rhus muelleri against Fusarium oxysporum f. sp. lycopersici. Ind Crop Prod, 75:150-158.
  19. Thangavelu R, Ganga P, Gopi M, Mustaffa MM. (2013). Management of eumusae leaf spot disease of banana caused by Mycosphaerella eumusae with Zimmu (Allium sativum x Allium cepa) leaf extract. Crop protection, 46: 100-105.
  20. Cavieres MF. Exposición a pesticidas y toxicidad reproductiva y del desarrollo en humanos. (2004). Análisis de la evidencia epidemiológica y experimental. Rev Med Chile, 132: 873-879.
  21. Díaz P, Cabrera A, Alem D, Larrañaga P, Ferreira F, Dalla M. (2011). Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chilean JAR, 71(2): 231-239.
  22. Sayago JE, Ordoñez RM, Negrillo L, Torres S, Isla MI. (2012). Antifungal activity of extracts of extremophile plants from the Argentine Puna to control citrus postharvest pathogens and Green mold. Postharvest Biol Technol, 67: 19-24.
  23. Fieira C, Oliveira F, Calegari RP, Machado A, Coelho AR. (2013). In vitro and in vivo antifungal activity of natural inhibitors against Penicillium expansum. Ciênc Tecnol Aliment, 33(1): 40-46.
  24. Sales MDC, Costa HB, Bueno PM, Ventura JA, Meira DD. (2016). Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac J Trop Biomed, 6(1): 26-31.
  25. Slusarenko AJ, Patel A, Portz D. (2008). Control of plant diseases by natural products: Allicin from garlic as a case study. Eur J Plant Pathol, 121: 313- 322.
  26. Petatán-Sagahón I, Anducho-Reyes MA, Silva-Rojas HV, Arana-Cuenca A, Tellez-Jurado A, Cárdenas-Álvarez IO, Mercado-Flores Y. (2011). Isolation of bacteria with antifungal activity against the phytopathogenic fungi Stenocarpella maydis and Stenocarpella macrospora. Int J Mol Sci, 12: 5522-5537.
  27. Bennett RN, Wallsgrove RM. (1994). Transley Review No. 72. Secondary metabolites in plant defense mechanisms. New Phytol, 127: 617-633.
  28. Dahham SS, Ali MN, Tabassum H, Khan M. (2010). Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). Am-Euras J Agric & Environ Sci, 9 (3): 273-281.
  29. Pundir RK, Jain P, Sharma C. (2010). Antimicrobial activity of ethanolic extracts of Syzygium aromaticum and Allium sativum against food associated bacteria and fungi. Ethnobot leaflets, 14: 344-360.
  30. Okigbo RN, Ogbonnaya UO. (2006). Antifungal effects of two tropical plant leaf extracts (Ocimum gratissimum and Afromomum melegueta) on postharvest yam (Dioscorea spp.) rot. Afr J Biotechnol, 5(9): 727-731.
  31. Ikegbunam M, Ukamaka M, Emmanuel O. (2016). Evaluation of the antifungal activity of aqueous and alcoholic extracts of six species. Am J Plant Sci, 7: 118-125.
  32. Quiroga EN, Sampietro AR, Vattuone MA. (2001). Short Communication: Screening antifungal activities of selected medicinal plants. J Ethnopharmacol, 74: 89-96.
  33. Fernandes-Peres JC, Retz-De Carvalho L, Gonçalez E, Saggion-Berian LO, D’arc Felicio J. (2012). Evaluation of antifungal activity of seaweed extracts. Ciênc agrotec, 36(3): 294-299.
  34. Yin M, Tsao S. (1999). Inhibitory effect of seven Allium plants upon three Aspergillus species. Int J Food Microbiol, 49: 49-56.
  35. Alkhail AAA. (2005). Antifungal activity of some extracts against some plant pathogenic fungi. Pak J Bio Sci, 8(3): 413-417.
  36. Curtis H, Noll U, Störmann J, Slusarenko AJ. (2004). Broad-spectrum activity of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi and Oomycetes. Physiol Mol Plant Pathol, 65: 79-89.
  37. Bhaskara MV, Angers P, Gosselin A, Arul J. (1998). Characterization and use of essential oil from Thymus vulgaris against Botrytis cinerea and Rhizopus stolonifer in strawberry fruits. Phytochemistry, 47(8): 1515-1520.
  38. Tripathi P, Dubey NK, Shukla AK. (2008). Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World J Microbiol Biotechnol, 24: 39-46.
  39. Anthony S, Abeywickrama K, Wijeratnam, SW. The effect of spraying essential oils of Cymbopogon nardus, Cymbopogon flexuosus and Ocimum basilicum on postharvest diseases and storage life of Embul banana. (2003). J Horticult Sci Biotechnol, 78(6): 780-785.
  40. Bouchra C, Achouri M, Idrissi LM, Hmamouchi M. (2003). Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinereal Pers: Fr. J Ethnopharmacol, 89: 165-169.
  41. Soylu EM, Kurt Ş, Soylu S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int J Food Microbiol, 143: 183-189.
  42. Vitoratos A, Bilalis D, Karkanis A, Efthimiadou A. (2013). Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Not Bot Horti Agrobo, 41(1): 86-92.
  43. Bouyahya A, Jamal A, Edaoudi F, Et-Touys A, Bakri Y, Dakka N. (2016). Origanum compactum Benth: A review on phytochemistry and pharmacological properties. Med Aromat Plants, 5: 4.
  44. Lee SH. (2007c). Short Communication: Fungicidal property of active component derived from Acorus gramineus rhizome against phytopathogenic fungi. Bioresour Technol, 98: 1324-1328.
  45. Xing F, Cheng G, Yi K. (2006). Study on the antimicrobial activities of the capsaicin microcapsules. J Appl Polym Sci, 102: 1318-1321.
  46. Davis SR, Perrie R, Apitz-Castro R. (2003). The in vitro susceptibility of Scedosporium prolificans to ajoene, allitridium and a raw extract of garlic (Allium sativum). J Antimicrob Chemother, 51: 593-597.
  47. Hughes BG, Lawson LD. (1991). Antimicrobial effects of Allium sativum L. (garlic), Allium ampeloprasum L. (elephant garlic), and Allium cepa L. (onion), garlic compounds and commercial garlic supplement products. Phytother Res, 5: 154-158.
  48. Mikaili P, Maadirad S, Moloudizargari M, Aghajanshakeri S, Sarahroodi S. (2013). Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounnds. Iran J Basic Med Sci, 16: 1031-1048.
  49. Benkeblia N. (2004). Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). Lebensm Wiss UTechnol, 37: 263-268.
  50. San-Blas G, Urbina JA, Marchán E, Contreras LM, Sorais F, San-Blas F. (1997). Inhibition of Paracoccidioides brasiliensis by ajoene is associated with blockade of phosphatidylcholine biosynthesis. Microbiology, 143: 1583–1586.
  51. Singh UP, Pandey VN, Wagner KG, Singh KP. (1990). Antifungal activity of ajoene, a constituent of garlic (Allium sativum). Can J Bot, 68: 1354-1356.
  52. Bianchi A, Zambonelli A, Zechini A, Bellesia F. (1997). Ultrastructural studies of the effects of Allium sativum on phytopathogenic fungi in vitro. Plant Dis, 81: 1241-1246.
  53. Wang HX, Ng TB. (2001). Purification of allivin, a novel antifungal protein from bulbs of the round-cloved garlic. Life Sci, 70: 357-365.
  54. Ali M, Thomson M, Afzal M. (2000). Review: Garlic and onions: their effect on eicosanoid metabolism and its clinical relevance. PLEFA, 62(2): 55-73.
  55. Abad MJ, Ansuategui M, Bermejo P. (2007). Active antifungal substances from natural sources. ARKIVO, 8: 116-145.
  56. Cotoras M, Mendoza L, Muñoz A, Yáñez K, Castro P, Aguirre M. (2011). Fungitoxicity against Botrytis cinerea of a flavonoid isolated from Pseudognaphalium robustum. Molecules, 16: 3885-3895.
  57. Muñoz-Concha D, Vogel H, Yunes R, Razmilic I, Bresciani L, Malheiros A. (2007). Presence of polygodial and drimenol in Drimys populations from Chile. Biochem Syst Ecol, 35: 434-438.
  58. Monsálvez M, Zapata N, Vargas M, Berti M, Bittner M, Hernández V. (2010). Antifungal effects of n-hexane extract and essential oil of Drimys winteri bark against Take-All disease. Ind Crops Prod, 31: 239-244.
  59. Carrasco H, Robles-Kelly C, Rubio J, Olea AF, Martínez R, Silva-Moreno E. (2017). Antifungal effect of polygodial on Botrytis cinerea, a fungal pathogen affecting table grapes. Int J Mol Sci, 18: 2251.
  60. Robles-Kelly C, Rubio J, Thomas M, Sedán C, Martinez R, Olea AF, Carrasco H, Taborga L, Silva-Moreno E. (2016). Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: evaluation of possible mechanism of action. Pestic Biochem Physiol, 141: 50-56.
  61. Mendoza L, Espinoza P, Urzua A, Vivanco M, Cotoras M. (2009). In vitro antifungal activity of the diterpenoid 7α-hydroxy-8(17)-labden-15-oic acid and its derivatives against Botrytis cinerea. Molecules, 14: 1966-1979.
  62. Mendoza L, Sepúlveda C, Melo R, Cotoras M. (2015). Characterization of the antifungal activity against Botrytis cinerea of sclareol and 13-episclareol, two labdane-type diterpenoids. J Chil Chem Soc, 60(3): 3024-3028.
  63. Mert-Türk F. (2006). Saponins versus plant fungal pathogens. J Cell Mol Biol, 5: 13-17.
  64. Saha S, Walia S, Kumar J, Parmar BS. (2010). Structure-biological activity relationships in triterpenic saponins: the relative activity of protobassic acid and its derivatives against plant pathogeninc fungi. Pest Manag Sci, 66: 825-831.
  65. Chapagain BP, Wiesman Z, Tsror L. (2007). In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind Crops Prod, 26: 109-115.
  66. Facchini PJ. (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol, 52: 29-66.
  67. Singh AK, Pandey MB, Singh UP. (2007). Antifungal activity of an alkaloid allosecurinine against some fungi. Mycobiology 35(2): 62-64.
  68. Oliva A, Meepagala KM, Wedge DE, Harries D, Hale AL, Aliotta G, Duke SO. (2003). Natural fungicides from Ruta graveolens L. leaves, including a new quinolone alkaloid. J Agric Food Chem, 51: 890-896.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP