JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 4 (2016): Journal of the Chilean Chemical Society
Original Research Papers

INTERMOLECULAR ASSOCIATION OF AMPHIPATHIC POLYELECTROLYTES IN AQUEOUS SOLUTIONS

Hernán E. Ríos
Departamento de Química. Facultad de Ciencias. Universidad de Chile
Marcela D. Urzúa
Departamento de Química. Facultad de Ciencias. Universidad de Chile
Valeria Villalobos
Departamento de Química. Facultad de Ciencias. Universidad de Chile
Víctor A. Vargas
Departamento de Química. Facultad de Ciencias. Universidad de Chile
Published December 10, 2016
How to Cite
Ríos, H. E., Urzúa, M. D., Villalobos, V., & Vargas, V. A. (2016). INTERMOLECULAR ASSOCIATION OF AMPHIPATHIC POLYELECTROLYTES IN AQUEOUS SOLUTIONS. Journal of the Chilean Chemical Society, 61(4). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/128

Abstract

The intermolecular association of amphipathic polyelectrolytes is studied using fluorescence and conductivity methods. This type of interaction is evidenced by the decrease in the average distances between charges as the polyelectrolyte side chain increases in length. This modify the dissociation degree and consequently, the linear charge density parameter. These distances were calculated with the Manning counterion condensation theory for the conductivity of polyelectrolyte solutions. The determination of the ratio I1/I3 of the fluorescence bands of pyrene with polymer content reveals the formation of hydrophobic microdomains at very low concentrations, smaller than the required concentration to produce a significant change in the average distances between charges. These distances and also the I1/I3 ratio vary with polymer concentration and their values were dependent on the size of the side chain in the polyelectrolyte. Finally, the experimental behavior of the solution viscosity and electrical conductivity of polyelectrolytes, which increase drastically with dilution, can be explained as a continuous change in the average distances between charges which produce conformational changes.

References

  1. G. Manning, J. Phys. Chem. 79, 262, (1975).
  2. G. Manning, J. Chem. Phys. 51, 924, (1969).
  3. H. Ríos, R. Barraza, I. Gamboa. Polym. Int. 31, 213, (1993).
  4. H. Ríos. Polym. Int. 50, 885, (1993).
  5. A. Zelikin, O. Davydova, N. Akritskaya, S. Kargov, V. Izumrudov. J. Phys.Chem. 108, 490, (2004).
  6. O. Davydova, A. Zelikin, S. Kargov, V. Izumrudov. Macromol. Chem. Phys., 202, 1361, (2001).
  7. O. Davydova, A. Zelikin, S. Kargov, V. Izumrudov. Macromol. Chem. Phys. 202, 1368, (2001).
  8. O. Davydova, A. Zelikin, S. Kargov, V. Izumrudov. Macromol. Chem. Phys. 203, 837, (2002).
  9. H. Ríos, G. Collío, M. Leal, M. Urzúa, V. Vargas. J. Macromol. Sci. Part B. Phys. 52, 841, (2013).
  10. H. Ríos, J. González-Navarrete, V. Vargas, M. Urzúa. Colloids Surface B. 384, 262, (2011).
  11. R. Bazito, F. Cassio, F. Quina. Macromolecular Symp. 229, 197 (2005).
  12. H. Vink. J.Chem.Soc. Faraday Trans. 1. 77, 2439, (1981).
  13. R. Barraza, R. Martínez. Bol. Soc. Chil. Quím., 45, 563, (2000).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP