JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 4 (2016): Journal of the Chilean Chemical Society
Original Research Papers

SYNTHESIS AND CHARACTERIZATION OF POLY([(2-methacryloyloxy) ethyl]) TRIMETHYLAMONNIUM CHLORIDE) RESIN WITH REMOVAL PROPERTIES FOR VANADIUM(V) AND MOLYBDENUM(VI)

D. V. Morales
Polymer Department, Faculty of Chemistry, University of Concepción
B. L. Rivas
Polymer Department, Faculty of Chemistry, University of Concepción
M. González
Polymer Department, Faculty of Chemistry, University of Concepción
Published December 10, 2016
How to Cite
Morales, D. V., Rivas, B. L., & González, M. (2016). SYNTHESIS AND CHARACTERIZATION OF POLY([(2-methacryloyloxy) ethyl]) TRIMETHYLAMONNIUM CHLORIDE) RESIN WITH REMOVAL PROPERTIES FOR VANADIUM(V) AND MOLYBDENUM(VI). Journal of the Chilean Chemical Society, 61(4). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/130

Abstract

It was successful synthesized the ion exchange resin poly([(2-methacryloyloxy) ethyl]) trimethylammonium chloride) PClMETA by radical polymerization to study the removal properties towards vanadium (V) and molybdenum (VI) and compared with the commercial resin AmberliteIRA-402 which contains the same functional group. The resin was characterized by FT-IR and SEM. Parameters including water adsorption capacity, effect of the pH, maximum retention capacity of the metal ions, elution, regeneration, adsorption time, and adsorption isotherms were studied. All the studies were carried out in Batch and Column equilibrium procedures. Thermodynamic parameters such as enthalpy, entropy, and free energy were calculated. The PClMETA resin showed higher capacity to remove V(V) and Mo(VI) from water solution than Amberlite IRA-402 commercial resin. The higher capacity displayed by PClMETA resin was attributed to the higher degree of swelling and different structure that Amberlite IRA-402 resin.

References

  1. B. Barkhordar, M. Ghiasseddi, J. Environ. Health Sci. Eng., 1: 58-64 (2004).
  2. D. Prabhakaran, M.S. Subramanian, Talanta, 59: 1227–1236 (2003).
  3. M. M. Jadhao, L.J. Paliwal, N.S. Bhave, Desalination, 2474: 56–465 (2009).
  4. B.L. Rivas, I Moreno-Villoslada, J. Appl. Polym. Sci., 69: 817-824 (1998).
  5. B.L. Rivas, E. D. Pereira, I. Moreno-Villoslada, Prog. Polym. Sci., 28: 173-208 (2003).
  6. B.L. Rivas, E.D. Pereira, M. Palencia, J. Sánchez, Progr. Polym. Sci., 36: 294-322 (2011).
  7. B.L. Rivas, E. Pereira. H.A. Maturana, Angew. Makromol. Chem., 220: 61-74 (1994).
  8. B.L. Rivas, E.D. Pereira, Bol. Soc. Chil. Quím., 45: 165-171 (2000).
  9. I. Moreno-Villoslada, B.L. Rivas, L. N. Schiappacasse, E. Pereira, Polymer, 45: 1771-1775 (2004).
  10. Ullman’s Encyclopedia of Industrial Chemistry, 5th Ed.; VCH, 1986.
  11. K. Kim, J.W. Cho, Korean J. Chem. Eng.,14: 162 – 167 (1997).
  12. A.M. Sastre, F.J. Alguacil, Chem. Eng. J., 81: 109-112 (2001).
  13. X. Liansheng, Z. Qixiu, G. Bofan, H. Shaoying, Int. J. Refract. Metals Hard Mater.,19: 145-148 (2001).
  14. J.M. Juneja, S. Singh, D.K. Bose, Hydrometallurgy, 41: 201– 209 (1996).
  15. E. Guibal, C. Milot, J. Roussy, Sep. Sci. Technol., 35: 1021-1038 (2000).
  16. T. Hu R.J. HaynesY.-F. Zhou A. Boullemant, I. Chandrawana, Water Research, 71: 32-41 (2015).
  17. K. Wejman-Gibas, , K. Wieszczycka, A. Wojciechowska,, K. Ochromowicz, P. Pohl., Sep. Sci. Technol., 158:71-79 (2016).
  18. P.C.H Mitchell, in Ullmann’s Encyclopedia of Industrial Chemistry, 5th Ed., 1990, A16, Chap. 7, pp 675-682 and references therein.
  19. 19. J. Aveston, E.W. Anacker, J.S Johnson, Inorg.Chem., 3:735-742 (1964).
  20. 20. R.H. Busey, O.L. Keller, J. Chem. Phys., 4: 215-221(1964).
  21. Morales D.V., Rivas B. L., and Escalona N., Polym. Bull., 73(3), 875-890 (2016).
  22. Zeng, L. & Yong Cheng, C, Hydrometallurgy, 98:10–20 (2009).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP