JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 3 (2019): Journal of the Chilean Chemical Society
Original Research Papers

SENSITIVE KINETIC SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF DIPHENHYDRAMINE IN REAL SAMPLES

César A. Soto
Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción
Renato A. Saavedra
Departamento de Física, Facultad de Ciencias Física y Matemáticas, Universidad de Concepción
Cristian A. Poza
Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción
David R. Contreras
Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción
Diego P. Oyarzún
Centro de Nanociencias Aplicadas (CENAP), Facultad de Ciencias Exactas, Universidad Andrés Bello
María I. Toral
Laboratorio de Química Analítica, Facultad de Ciencias, Universidad de Chile
Published October 30, 2019
Keywords
  • Kinetic,
  • Spectrophotometric,
  • Diphenhydramine
How to Cite
Soto, C. A., Saavedra, R. A., Poza, C. A., Contreras, D. R., Oyarzún, D. P., & Toral, M. I. (2019). SENSITIVE KINETIC SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF DIPHENHYDRAMINE IN REAL SAMPLES. Journal of the Chilean Chemical Society, 64(3), 4507-4512. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1312

Abstract

Kinetic spectrophotometry methods have levels of accuracy and sensitivity which are comparable to those of other methods and have been used in the quantification of different pharmaceutical analytes in different matrices. This work describes an indirect kinetic spectrophotometric method for the determination of diphenhydramine by the alkaline oxidation with permanganate in pharmaceutical formulations (injection) and tap water spiked samples. Measurements of changes in absorbance at 610 nm were used as criterion of the reaction progress. The optimization of chemical variables of oxidation reaction was realized using experimental design by multivariate analysis. The optimized values were 20 min of reaction time, KMnO4 1.00x10−3 molL−1, Na2SO4 0.20 molL-1 and NaOH 0.20 molL-1. Under these conditions calibration curves were constructed. The detection limits obtained in pharmaceutical formulations (injection) and tap water spiked samples, were 9.65x10-7 mol L−1 and 1.23x10-6 mol L−1, respectively. The method is simple and does not require expensive instruments or complicated extraction steps of the reaction product.

38.jpg

References

1. http://www.drugbank.ca/drugs/DB01075.

2. Caddy B., Analyst, vol. 99, n° 1182, pp.555-564. 1974.

3. British Pharmacopoeia, Her Majesty’s Stationary Office, London, 1988.

4. European Pharmacopoeia, 5th Ed. Main Volume, European Pharmacopoeia Commission, European Directorate for the Quality of Medicines & Healthcare: Maisonneuve, France, 2005.

5. The United States Pharmacopoeia, United States Pharmacopoeial Convention, Rockville, MD, 2002.

6. H. W. Darwish, F. Metwally, A. EL. Bayoumi, Journal of Nanomaterials and Biostructures, vol. 9, n°4, pp. 1359-1372, 2014.

7. R. Hajian, E. Kamai, Journal of the Indian Chemical Society, vol. 91, n°11, pp. 2133-2141, 2014.

8. B. Devrim, E. Dinc, Acta Poloniae Pharmaceutica, vol. 71, n° 5, pp. 721-729, 2014.

9. M. El-Didamony, A. Moustafa., Arabian Journal of Chemistry, vol. 3, n°4, pp. 265–270 2010.

10. S. Tatar, F. Tuncel, Spectrochimica Acta Part A, vol. 77, n°1, pp. 324–329, 2010.

11. K. Basavaiah, V. Charan, Indian Journal of Chemical Technology, vol.10, n°4, pp. 382-385, 2003.

12. M. Elshahat, M. Badei, J. of Chemical Technology and Biotechnology, vol.54, n°2, pp.175-181, 1992.

13. G. Santoni, P. Mura, S. Pinzauti, International Journal of Pharmaceutics, vol. 50, n°1, pp.75-78,1989.

14. M. Kishk, Safaa, I. Salama, M. El-Sadek, Journal of liquid chromatography & related technologies, vol.37, n°5, pp.726-747, 2014.

15. R. Dantu Durga, S. Sait, K. Mukkanti, J. of Chromatographic Science, vol.49, n°4, pp.281-286, 2011.

16. Z. Ge, Y. Luo, X. Zhao, African Journal of Pharmacy and Pharmacology, vol. 5, n°18, pp. 2100-2105, 2011.

17. D. DiGregorio, J. Sherma, J. of Liquid Chromatography & Related Technologies, vol. 22, n°10, pp. 1599-1606, 1999.

18. E. Muller, J. Sherma, J. of Liquid Chromatography & Related Technologies, vol.22, n°1, pp.153-159, 1999.

19. I. Caraballo, M. Fernandez, M. Holgado, Drug Development and Industrial Pharmacy, vol.21, n°5, pp. 605-613, 1995.

20. S. Raj, S. Kapadia, A. Argekar. Talanta, vol. 46, n°1, pp. 221–225, 1998.

21. Z. Changzhi, C. Xiaoli, T. Shengchen, and J. Kui, Analytical Sciences, vol. 24, n°4, pp. 535-538, 2008.

22. I. Reguera, M. Rubio, A. Diaz, Analytical Sciences, vol. 20, n°5, pp.799-803, 2004.

23. J. Martinez Calatayud, F. J. Blasco Martinez, S. Sagrado Vives. Microchimica Acta, vol.106, n°3-6, 319-325, 1992.

24. J. Calatayud, A. Sam Pedro, S. Sarrion, Analyst, vol.115, n°6, pp.855-858, 1990.

25. M. El Ries, K. Sabry. Journal of Pharmaceutical and Biomedical Analysis, vol.25, n°1, pp. 3–7, 2001.

26. S. Khalil. Journal of Pharmaceutical and Biomedical Analysis, vol.21, n°4, pp.697–702, 1999.

27. C. Nerin, J. Cacho and A. Garnicao, Journal of Pharmaceutical & Biomedical Analysis, vol.11, n°4-5, pp.411-414, 1993.

28. M. Akl, E. Frag, G. Mohamed, Mohammed S.A. Bashanaini. Int. J. Electrochem. Sci., vol.8, n°9, pp.11546-11563, 2013.

29. E. Frag, G. Mohamed, W. El-Sayed. Bioelectrochemistry, vol.82, n°2, pp.79–86, 2011.

30. L. Zhang, Y. Chen, M. Lin, G. Fan, W. Zhao, Y. Wu., Chromatographia, vol.65, n° 5-6, pp.305–311, 2007.

31. Y. Donga, X. Chen, Y. Chen, X. Chena, Z. Hu, Journal of Pharmaceutical and Biomedical Analysis vol.39, n°1-2, pp. 285–289, 2005.

32. A. Marchesini, M.R. Williner, V.E. Mantovani, J.C. Robles, H.C. Goicoechea, Journal of Pharmaceutical and Biomedical Analysis, vol.31, n°1, pp. 39-46.

33. M. Gomez, R. Olsina, L. Martinez, M. Silva, Journal of Pharmaceutical and Biomedical Analysis, vol.30, n°3, pp.791–799, 2002.

34. J. Wallace, J. Biggs, and E. Dahl, Analytical Chemistry, vol.38, n°7, pp.831-834, 1966.

35. L. Chen, X. He, K. Zhou, D. Li, and T. Liu, Latin American Journal of Pharmacy, vol.31, n°8, pp.1096-1101, 2012.

36. C. Wang, G. Fan, M. Lin, Y. Chen, and W. Zhao, Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, vol.854, n° 1-2, pp.48-56, 2007.

37. S. Kumar, D. Rurak and K. Wayne, J. Mass Spectrom., vol.33, n°12, pp.1171-1181, 1998.

38. K. Walters-Thompson, W. Mason. Pharmaceutical Research, vol.9, pp. 929-932. 1992.

39. M. Ayad, H. Abdellatef, M. Hosny and Y. Sharaf, European Journal of Chemistry, vol.4, n°1, pp.35-43, 2013.

40. M. G. Abdel Wahed, R. El Sheikh, A. A. Gouda, and S. Abou Taleb, Journal of Spectroscopy, vol. 2014, Article ID917234, 12 pages, 2014.

41. A. M. Akhoundi-Khalafi and M. R. Shishehbore, International Journal of Analytical Chemistry, vol. 2015, Article ID 439271, 6 pages, 2015.

42. F. Nacaratte, M. Toral, and C. Soto, J. Chil. Chem. Soc., vol.61, nº 3, pp. 3102-3107, 2016.

43. C. Soto, C. Poza, D. Contreras, J. Yáñez, F. Nacaratte, and M. Toral, Journal of Analytical Methods in Chemistry, vol. 2017, Article ID 9812894, 8 pages.

44. Barros D., Statistical design. Chemometrics. First Ed. Elsevier 2006.

45. David Contreras, Claudia Oviedo, Roberto Valenzuela, Juanita Freer, Kimena Rojo, Jaime Rodríguez. J. Chil. Chem. Soc, 54, N° 2 (2009), 141.

46. J. Rose, Advanced Physicochemical Experiments, Pitman, London, UK, 1964.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP