JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 64 No 3 (2019): Journal of the Chilean Chemical Society
Original Research Papers

OSCILLATORY STRAIN SWEEPS OF HYDROGELS FROM METHACRYLATED ALGINATE MACROMONOMERS: ASSESSMENT OF SYNTHESIS AND ACQUISITION VARIABLES

Camila Solar
Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción
Daniel Palacio
Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción
Susana Sánchez
Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción
Bruno F. Urbano
Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción
Published October 30, 2019
Keywords
  • rheology,
  • alginate,
  • hydrogel,
  • macromonomer
How to Cite
Solar, C., Palacio, D., Sánchez, S., & Urbano, B. F. (2019). OSCILLATORY STRAIN SWEEPS OF HYDROGELS FROM METHACRYLATED ALGINATE MACROMONOMERS: ASSESSMENT OF SYNTHESIS AND ACQUISITION VARIABLES. Journal of the Chilean Chemical Society, 64(3), 4542-4546. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1317

Abstract

The objective of this study is the rheological characterization of photocrosslinked alginate hydrogels synthesized from methacrylated alginate macromonomers. We first optimized the rheological acquisition parameters for this hydrogels, that is, we studied the influence of the geometries diameter, distance between plates (gap), and solvent trap in the rheological response. Our results show important variations of shear storage modulus, G’, and yield strain with the three parameters measured. Secondly, with the optimized experimental parameters, rheological tests were performed on hydrogels synthesized under different conditions. Three parameters were studied; UV exposure time (polymerization time), macromonomer concentration and photoinitiator concentration. Our data indicate that the polymerization time and the macromonomer concentration have an important effect on the viscoelastic properties of the hydrogel, significantly modifying the shear storage modulus, G’, and the yield strain while the photoinitiator concentration did not influence the viscoelastic properties.

813.jpg

References

1. Ma, S.; Yu, B.; Pei, X.; Zhou, F., Structural hydrogels. Polymer 2016, 98, 516-535.

2. Guan, X.; Avci-Adali, M.; Alarçin, E.; Cheng, H.; Kashaf, S. S.; Li, Y.; Chawla, A.; Jang, H. L.; Khademhosseini, A., Development of hydrogels for regenerative engineering. Biotechnol. J 2017, 1600394-n/a.

3. Kamata, H.; Li, X.; Chung, U.-i.; Sakai, T., Design of Hydrogels for Biomedical Applications. Adv. Healthc. Mater. 2015, 4 (16), 2360-2374.

4. Caló, E.; Khutoryanskiy, V. V., Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65 (Supplement C), 252-267.

5. Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U., Engineering hydrogels as extracellular matrix mimics. Nanomedicine (London, England) 2010, 5 (3), 469-484.

6. Belmar, L.; Toledo, L.; Sánchez, S. A.; Urbano, B. F., Fluorescent nanotubes in PHEMA hydrogels: Visualizing aggregation and distribution by confocal fluorescence microscopy. Materials Today Communications 2018, 16, 285-292.

7. Toledo, L.; Urbano, B. F., Poly(2-hydroxyethyl methacrylate)-based porous hydrogel: Influence of surfactant and SiO2 nanoparticles on the morphology, swelling and thermal properties. Eur. Polym. J. 2016, 81, 316-326.

8. Passos, M. F.; Dias, D. R. C.; Bastos, G. N. T.; Jardini, A. L.; Benatti, A. C. B.; Dias, C. G. B. T.; Maciel Filho, R., pHEMA hydrogels. J. Therm. Anal. Calorim. 2016, 125 (1), 361-368.

9. Lee, K. Y.; Mooney, D. J., Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37 (1), 106-126.

10. Loessner, D.; Meinert, C.; Kaemmerer, E.; Martine, L. C.; Yue, K.; Levett, P. A.; Klein, T. J.; Melchels, F. P. W.; Khademhosseini, A.; Hutmacher, D. W., Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nature Protocols 2016, 11 (4), 727-746.

11. Pourjavadi, A.; Harzandi, A. M.; Hosseinzadeh, H., Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur. Polym. J. 2004, 40 (7), 1363-1370.

12. Drury, J. L.; Mooney, D. J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24 (24), 4337-4351.

13. Jeon, O.; Bouhadir, K. H.; Mansour, J. M.; Alsberg, E., Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 2009, 30 (14), 2724-2734.

14. Mignon, A.; Devisscher, D.; Graulus, G.-J.; Stubbe, B.; Martins, J.; Dubruel, P.; De Belie, N.; Van Vlierberghe, S., Combinatory approach of methacrylated alginate and acid monomers for concrete applications. Carbohydr. Polym. 2017, 155, 448-455.

15. Stubbe, B.; Graulus, G. J.; Reekmans, G.; Courtin, T.; Martins, J. C.; Van Vlierberghe, S.; Dubruel, P.; Adriaensens, P., A straightforward method for quantification of vinyl functionalized water soluble alginates via 13C-NMR spectroscopy. Int. J. Biol. Macromol. 2019, 134, 722-729.

16. Mezger, T. G., The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers. Vincentz Network: 2006.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP