JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 2 (2020): Journal of the Chilean Chemical Society
Original Research Papers

IDENTIFICATION OF COEXISTING INDIGO SPECIES IN AN ANCIENT GREEN THREAD USING DIRECT PLASMON-ENHANCED RAMAN SPECTROSCOPY

Cristian Tirapegui
Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma. El Llano Subercaseaux 2801, San Miguel, Santiago, Chile.
Macarena García
a Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Subida Leopoldo Carvallo 270, Valparaíso, Chile.
Andrés Aracena
Universidad de las Américas, Instituto de Ciencias Naturales, Manuel Montt 948, Santiago, Chile.
Álvaro E. Aliaga
Departamento de Química, Facultad de Ciencias, Universidad de Chile, P.O. Box 653 Santiago, Chile.
Marcelo Campos-Vallette
Departamento de Química, Facultad de Ciencias, Universidad de Chile, P.O. Box 653 Santiago, Chile.
Published July 18, 2020
Keywords
  • Ancient thread,
  • Indigo,
  • Leuco-Indigo,
  • Raman,
  • SERS
How to Cite
Celis, F., Tirapegui, C., García, M., Aracena, A., Aliaga, Álvaro E., & Campos-Vallette, M. (2020). IDENTIFICATION OF COEXISTING INDIGO SPECIES IN AN ANCIENT GREEN THREAD USING DIRECT PLASMON-ENHANCED RAMAN SPECTROSCOPY. Journal of the Chilean Chemical Society, 65(2), 4798-4803. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1415

Abstract

A green ancient thread sample from a Chilean mummy turban was analyzed by plasmon-enhanced Raman scattering spectroscopy using a direct drop-colloidal method. The enhanced-Raman signals in the sample are associated with biomolecules from the thread and two coexisting dyes, indigo and leuco-indigo. The presence of indigo (blue colour) was identified from its most characteristic vibrational bands. Leuco-indigo (yellow colour) was identified for the first time in an ancient textile; its SERS signals are coincident with the SERS bands of a synthesized leuco-indigo. The interconversion leuco-indigo to indigo was followed by UV-visible spectroscopy. Based on theoretical calculations it is proposed that the interconversion involves a  electron delocalization mainly around the NC-CN bridge. The mixture of both dyes (indigo and leuco-indigo) is the responsible for the green colour observed.

 

1415.jpg

References

  1. T. Maugard, E. Enaud, P. Choisy, M. D. Legoy. Phytochemistry. 58, 897–904 (2001).
  2. W. Maier, B. Schumann, D. Gröger. Phytochemistry. 29, 817–819 (1990).
  3. J. C. Splitstoser, T. D. Dillehay, J. Wouters, A. Claro. Sci. Adv. 2, e1501623 (2016).
  4. A. N. Padden, V. M. Dillon, J. Edmonds, M. D. Collins, N. Alvarez, P. John. Int. J. Syst. Bacteriol. 49, 1025–1031 (1999).
  5. A. Roquero. An. del Mus. América. 3, 145–160 (1995).
  6. A. N. Padden, V. M. Dillon, P. John, J. Edmonds, M. D. Collins, N. Alvarez. Nature. 396, 225–225 (1998).
  7. N. Mermod, S. Harayama, K. N. Timmis. Bio/Technology. 4, 321–324 (1986).
  8. J. Wouters, N. Rosario-Chirinos. J. Am. Inst. Conserv. 31, 237–255 (1992).
  9. L. Degani, C. Riedo, O. Chiantore. Anal. Bioanal. Chem. 407, 1695–1704 (2015).
  10. A. Fiedler, M. Baranska, H. Schulz. J. Raman Spectrosc. 42, 551–557 (2011).
  11. R. Mulholland, D. Howell, A. Beeby, C. E. Nicholson, K. Domoney. Herit. Sci. 5, 1–19 (2017).
  12. L. H. Oakley, D. M. Fabian, H. E. Mayhew, S. A. Svoboda, K. L. Wustholz. Anal. Chem. 84, 8006–8012 (2012).
  13. M. Ricci, C. Lofrumento, E. Castellucci, M. Becucci. J. Spectrosc. 2016, 1–10 (2016).
  14. M. A. García-Bucio, E. Casanova-González, J. L. Ruvalcaba-Sil, E. Arroyo-Lemus, A. Mitrani-Viggiano. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20160051 (2016).
  15. H. Schlüter. Textilveredlung. 25, 218–221 (1990).
  16. A. Roessler, O. Dossenbach, P. Rys. J. Electrochem. Soc. 150, D1 (2003).
  17. A. Roessler, X. Jin. Dye. Pigment. 59, 223–235 (2003).
  18. E. Platania, C. Lofrumento, E. Lottini, E. Azzaro, M. Ricci, M. Becucci. Anal. Bioanal. Chem. 407, 6505–6514 (2015).
  19. O. Otłowska, M. Ślebioda, A. Kot-Wasik, J. Karczewski, M. Śliwka-Kaszyńska, Molecules, 23, 339 (2018).
  20. G. Focacci. Rehue, 49–63 (1969).
  21. G. Focacci. Chungara, Rev. Antropol. Chil. 3, 23–74 (1974).
  22. F. W. Billmeyer, M. Saltzman, Principles of color technology. In: Color and Color Difference Measurement (John Wiley & Sons, Inc., New York, 1981).
  23. R. S. Hunter, R. W. Harold, J. Wiley, The Measurement of Appearance (John Wiley & Sons, Inc., New York, ed. 2nd, 1987).
  24. S. Hoces de la Guardia Ch, P. Brugnoli B, P. Jelvez H. Bol. del Mus. Chil. Arte Precolomb. 16, 67–92 (2011).
  25. F. Celis, M. M. Campos-Vallette, J. S. Gómez-Jeria, R. E. Clavijo, G. P. Jara, C. Garrido. Spectrosc. Lett. 49, 336–342 (2016).
  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian (2009).
  27. S. I. Gorelsky, AOMix: Program for Molecular Orbital Analysis (2012), (available at http://www.sg-chem.net/).
  28. T. Aguayo, C. Garrido, R. E. Clavijo, J. S. Gómez-Jeria, C. Araya Monasterio, M. Icaza, F. Espinoza Moraga, M. M. Campos Vallette. J. Raman Spectrosc. 44, 1238–1245 (2013).
  29. M. C. Caraher, A. Sophocleous, J. R. Beattie, O. O’Driscoll, N. M. Cummins, O. Brennan, F. J. O’Brien, S. H. Ralston, S. E. J. Bell, M. Towler, A. I. Idris. Biochim. Biophys. Acta - Mol. Basis Dis. 1864, 398–406 (2018).
  30. A. Kuzuhara. Kobunshi Ronbunshu. 69, 313–325 (2012).
  31. W. Akhtar, H. G. M. Edwards, D. W. Farwell, M. Nutbrown. Spectrochim Acta Part A. 53, 1021–1031 (1997).
  32. A. Kuzuhara. Biopolymers. 81, 506–514 (2006).
  33. F. Madzharova, Z. Heiner, J. Kneipp. J. Phys. Chem. C. 121, 1235–1242 (2017).
  34. A. Baran, A. Fiedler, H. Schulz, M. Baranska. Anal. Methods. 2, 1372 (2010).
  35. G. Corales, F. Celis, J. S. Gómez-Jeria, M. Campos, J. J. Cárcamo-Vega. Spectrosc. Lett. 50, 316–321 (2017).
  36. J. Seixas de Melo, A. P. Moura, M. J. Melo. J. Phys. Chem. A. 108, 6975–6981 (2004).
  37. M. M. Sousa, C. Miguel, I. Rodrigues, A. J. Parola, F. Pina, J. S. Seixas De Melo, M. J. Melo. Photochem. Photobiol. Sci. 7, 1353–1359 (2008).
  38. J. B. Weinrach, D. R. Meyer, T. G. J. Joseph, P. E. Michalski, K. L. Carter, D. S. Grubisha, D. W. Bennett. Jorunal Crystallogr. Spectrosc. Res. 22, 291–301 (1992).
  39. H. Takahashi, N. Kaneko, K. Miwa. Spectrochim. Acta Part A Mol. Spectrosc. 38, 1147–1153 (1982).
  40. G. Socrates, lnfrared Characteristic Group Frequencies: Tables and Charts (John Wiley & Sons, Ltd, Chichester, ed. 3rd, 2004).
  41. D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, London, ed. 1st, 1991).
  42. D. V. Konarev, L. V. Zorina, S. S. Khasanov, A. F. Shestakov, A. M. Fatalov, A. Otsuka, H. Yamochi, H. Kitagawa, R. N. Lyubovskaya. Inorg. Chem. 57, 583–589 (2018).
  43. K. Fukatsu. Sen’i Gakkaishi. 44, 238–242 (1988).
  44. D. Balköse, H. Baltacioǧlu. J. Chem. Technol. Biotechnol. 54, 393–397 (1992).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP