JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 66 No 3 (2021): Journal of the Chilean Chemical Society
Original Research Papers

COMPARATIVE REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION USING DIFFERENT ADSORBENTS

Ikhlass Marzouk Trifi
Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire Dessalement et Traitement des Eaux
Beyram Trifi
Laboratoire Matériaux, Traitement et Analyse, Institut National de Recherche et d’Analyse Physico-chimique (INRAP), Biotechpole Sidi Thabet, Tunisie
Houda Zendah
Laboratoire de Traitement des Eaux Naturelles, Centre de Recherches et des Technologies des Eaux, Technopole de Borj-Cédria, Soliman, Tunisie
Béchir Hamrouni
Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire Dessalement et Traitement des Eaux, 2092, Tunisie
Published August 29, 2021
Keywords
  • activated orange peels,
  • isotherms,
  • kinetics,
  • magnetic alginate composite beads,
  • methylene blue
How to Cite
Marzouk Trifi, I., Trifi, B., Zendah, H., & Hamrouni, B. (2021). COMPARATIVE REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION USING DIFFERENT ADSORBENTS. Journal of the Chilean Chemical Society, 66(3), 5246-5250. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1468

Abstract

A comparative study for the adsorption of Methylene blue onto different prepared adsorbents was investigated. First, a comparative study was performed with different parameters between orange peels, orange peels activated with phosphoric acid, orange peels activated encapsulating in alginate and orange peels activated encapsulating in magnetic alginate. It can be concluded that the magnetic alginate composite beads were the best adsorbent. Then the isotherms, kinetics and regeneration studies for the removal of Methylene blue were studied onto magnetic alginate composite beads. The adsorption of Methylene blue on magnetic alginate composite beads was applied to isotherm models showed that the interaction of Methylene blue with magnetic alginate composite beads surface is localized monolayer adsorption. The kinetic process flow a pseudo-second-order kinetic. Finally, the removal efficiencies were maintained using HCl solution as desorbing agent after five cycles of adsorption-desorption.

 

1468.jpg

References

  1. Aarfane, A.; Salhi, A.; El Krati, M.; Tahiri, S.; Monkade, M.; Lhadi, E.K.; and Bensitel, M. J. Mater. Environ. Sci. 5, 1927 (2014).
  2. Benhouria, A.; Islam, M.A.; Zaghouane-Boudiaf, H.; Boutahala, M.; and Hameed, B.H. Chem. Eng. J. 270, 621 (2015).
  3. Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; and Zhu, Z. Bioresour. Technol.101, 3040 (2010).
  4. Peng, Y.; Wang, K.K.; Liu, T.; Xu, J.; and Xu, B.G. Appl. Catal. B. 203, 946 (2017).
  5. Pandey, A.; Singh, P.; and Iyengar, L. Int. Biodeter. Biodegr. 59, 73 (2017).
  6. Canizares, P.; Martínez, F.; Jiménez, C.; Lobato, J.; and Rodrigo, M.A. Environ. Sci. Technol. 40, 6418 (2006).
  7. Arslan, İ.; Balcioǧlu, A.D.; and Bahnemann, D.W. Dyes. Pigm., 47, 207 (2000).
  8. Al-Bastaki, N. Chem. Eng. Process. 43, 1561 (2004).
  9. Liu, Q.; Yang, B.; Zhang, L.; and Huang, R. Inter. J. Biol. Macromol. 72, 1129 (2015).
  10. Oladipo, A.A.; and Gazi, M. J. Water. Process. Eng. 2, 43 (2014).
  11. Peng, Q.; Liu, M.; Zheng, J.; and Zhou, C. Micropor. Mesopor. Mat. 201, 190 (2015).
  12. Kyzas, G.Z.; Lazaridis, N.K.; and Mitropoulos, A.Ch. Chem. Eng. J. 189, 148 (2012).
  13. Zeng, G.; Min, C.; Danlian, H.; Cui, L.; Piao, X.; Zhen, W.; Ningjie, L.; Chen, Z.; Xiaoxiao, H. and Yan, H. Waste. manage. 4, 424 (2015).
  14. Giannakoudakis, D.A.; Kyzas, G.Z.; Avranas, A.; and Lazaridis, N.K. J. Mol. Liq. 213, 381 (2016).
  15. Aichour, A.; Zaghouane-Boudiaf, H.; Iborra, C.V. and Polo, M.S. J. Mol. Liq. 256, 533 (2018).
  16. Hassani, A.; Soltani, R.D.C.; Karaca, S.; and Khataee, A. J. Ind. Eng. Chem. 21, 1197 (2015).
  17. Jost, V.; Kobsik, K.; Schmid, M.; and Noller, K. Carbohydr. Polym. 110, 309 (2014).
  18. Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. J. Phys. D Appl. Phys. 36, 167 (2003).
  19. Martin, C. R.; Mitchell, D. T. Anal. Chem. 70, 322 (1998).
  20. Rocher, V.; Siaugue, J.M.; Cabuil, V.; and Bee, A. Water. Res. 42, 1290 (2008).
  21. Fan, L.; Luo, C.; Sun, M.; Qiu, H.; and Li, X. Colloids. Surf. B. 103, 601 (2013).
  22. Travlou, N.A.; Kyzas, G.Z.; Lazaridis, N.K.; and Deliyanni, E.A. Langmuir. 29, 1657 (2013).
  23. Elwakeel, K.Z.; El-Bindary, A.A.; El-Sonbati, A.Z.; and Hawas, A.R. Can. J. Chem. 95, 807 (2017).
  24. Sun, L.; Chen, D.; Wan, S.; and Yu, Z. Bioresour. Technol. 198, 300 (2015).
  25. Zakaria, Z.A.; Suratman, M.; Mohammed, N.; and Ahmad, W.A. Desalination. 244, 109 (2009).
  26. Nasrullah, A.; Bhat, A.H.; Naeem A.; Isa, M.H.; and Danish, M. Int. J. Biol. Macromol. 107,1792 (2019).
  27. Ravi, R.; and Pandey, L.M.; Appl. Clay Sci. 169, 102 (2019).
  28. Alves, D.C.L.; Yáñez-Vilar, S.; Piñeiro-Redondo, Y.; and Rivas, J. Nanomaterials. 9, 356 (2019).
  29. Afroze, S.; Sen T.; Ang, H. M.; Nishioka, H. Desalin. Water. Treat. 57, 1 (2015).
  30. Shakoor, S.; Nasar, A. J. Taiwan. Inst. Chem. E. 66, 154 (2016).
  31. Hassan, A.F.; Abdel-Mohsen, A.M.; and Fouda, M.M.G. Carbohydr. Polym. 102, 192 (2014).
  32. Saadi, R.; Saadi, Z.; Fazaeli, R.; and Fard, N.E. Korean. J. Chem. Eng. 32, 787 (2015).
  33. Malik, P.K. J. Hazard. Mater. 113, 81 (2014).
  34. Hosseinia, M.; Mertensb, S.F.L.; Ghorbanic, M.; and Arshadi, M.R. Mater. Chem. Phys. 78, 800 (2003).
  35. Jovanovich, D.S. Colloid Polym. Sci., 235 1203 (1969).
  36. Inglezakisa, V.J.; and Zorpas, A.A. Desalin. Water. Treat. 39, 149 (2012).
  37. Auta, M. and Hameed, B.H. J. Ind. Eng. Chem. 19, 1153 (2013).
  38. Ho, Y.S.; and Mckay, G. J. Environ. Sci. Health. A34, 1179 (1999).
  39. Azizian, S.; Haerifar, M.; and Bashiri, H. Chem. Eng. J. 146, 36 (2009).
  40. Bhatti, H.N.; Zaman, Q.; Kausar, A.; Noreen, S.; and Iqbal, M. Eco.l Eng. 95, 216 (2016).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP