JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 66 No 2 (2021): Journal of the Chilean Chemical Society
Original Research Papers

Mn-DOPPED ZnS QUANTUM DOTS AS SENSITIVE SENSOR FOR DETERMINATION OF CIPROFLOXACIN IN PHARMACEUTICAL AND BIOLOGICAL SAMPLES

Mian Muhammad
University of Malakand
Dr. Behisht Ara
Institute of Chemical Sciences, University of Peshawar, Pakistan
Bio
Dr. Faiz Ali
Department of Chemistry, University of Malakand Pakistan
Mr. Izaz Ahmad
Department of Chemistry, University of Malakand Pakistan
Published June 12, 2021
Keywords
  • Spectrofluorimetric,
  • Ciprofloxacin,
  • Quenching,
  • Quantum dots,
  • Fluorescence intensity
How to Cite
Muhammad, M., Ara, B., Ali, F., Ahmad, I., & Ullah, H. (2021). Mn-DOPPED ZnS QUANTUM DOTS AS SENSITIVE SENSOR FOR DETERMINATION OF CIPROFLOXACIN IN PHARMACEUTICAL AND BIOLOGICAL SAMPLES. Journal of the Chilean Chemical Society, 66(2), 5130-5135. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1628

Abstract

A simple and fast spectrofluorimetric method for determination of ciprofloxacin based on its quenching effect on the fluorescence intensity of colloidal water ­soluble TGA ­caped, Mn doped ZnS quantum dots (QDs) has been described. The QDs having characteristic fluorescence spectra with maximum excitation at 315 nm followed by an emission peak at 632 nm were characterized using Energy Dispersive X-Ray and X-ray Diffraction techniques. The effect of various parameters such as concentration of QDs, time, pH, common excipients and metal ions on the quenching phenomenon was investigated. Fluorescence quenching was found to be maximum with 10 µg mL­-1 of QDs at pH 8 and fluorescence intensity was observed to be constant upto 45 min. The Stern­-Volmer calibration plot of F0/F as a function of ciprofloxacin concentration was found to be linear in the range of 0.5-10 µg mL­-1 with r² = 0.993. Under optimal experimental conditions the method was found to be interference free. The percent relative standard deviation of the proposed method calculated against method blank was found to be 1.10%. The limit of detection (LOD) and the limit of quantitation (LOQ) for Cf (signal to noise ratio 3:1 for LOD and 10:1 for LOQ) were calculated to be 0.15 and 0.50 μg mL-1 respectively. Average percent recoveries (±SD) obtained for spiked commercial formulations; ciprol and ciproquine, and serum and urine samples were found to be in the range of 92.2±1.8% to 99.5±1.5%, 90.5±1.2% to 96.7±1.4% and 94.0±1.2% to 98.5±1.4% respectively. The data evidently prove the potential of the proposed sensor QDs in biological analysis.

1628.jpg

References

[1] R. Kharat, S. Jadhav, S. Pawar, A. Tamboli, PharmaTutor 3, 51 (2015).
[2] N.S. Turkie, H.Q. Munshid, J. Pharm. Sci Res. 11, 1563 (2019).
[3] S. Palamy, W. Ruengsitagoon, Spectrochim. Acta A. 190, 129 (2018).
[4] T. Madrakian, S. Maleki, A. Afkhami, Sensor. Actuat. B-Chem. 243, 14 (2017).
[5] A.-N. Kawde, M.A. Aziz, N. Odewunmi, N. Hassan, A. AlSharaa, Arab. J. Sci. Eng. 39, 131 (2014).
[6] J. Wang, J. Dai, M. Meng, Z. Song, J. Pan, Y. Yan, C. Li, J. App. Polym. Sci. 131, (2014).
[7] USP38NF33, US. Pharmacopeia & National Formulary, 2016, 3162–3270.
[8] A. El-Kosasy, O. Abdel-Aziz, N. Magdy, N. El Zahar, Spectrochim. Acta A 157, 26 (2016).
[9] M.E. El-Kommos, G.A. Saleh, S.M. El-Gizawi, M.A. Abou-Elwafa, Talanta 60, 1033 (2003).
[10] M.P. Deepak, G.P. Mamatha, Anal. Bioanal. Electrochem. 7(5), 523 (2015).
[11] Y.-D. Liang, J.-F. Song, X.-F. Yang, Anal. Chim. Acta 510, 21 (2004).
[12] X. Xu, L. Liu, Z. Jia, Y. Shu, Food Chem. 176, 219 (2015).
[13] S.N. Razzaq, M. Ashfaq, I. Mariam, I.U. Khan, S.S. Razzaq, G. Mustafa, J. Chilean Chem. Soc. 62, 3572 (2017).
[14] I.M. Shakir, R.F. Hassan, Iraqi J. Sci. 57, 522 (2016).
[15] S. Sadeghi, M. Jahani, F. Belador, Spectrochim. Acta A 159, 83 (2016).
[16] H. Wang, C. Chen, Y. Liu, Y. Wu, Y. Yuan, Q. Zhou, Talanta 198, 242 (2019).
[17] K. Abha, J. Nebu, J.A. Devi, R. Aparna, R. Anjana, A. Aswathy, S. George, Sensor. Actuat. B-Chem. 282, 300 (2019).
[18] S. Kulchat, W. Boonta, A. Todee, P. Sianglam, W. Ngeontae, Spectrochim. Acta A 196, 7 (2018).
[19] Z. Wang, Y. Zhang, B. Zhang, X. Lu, Talanta 190, 1 (2018).
[20] M. Hua, S. Yang, J. Ma, W. He, L. Kuang, D. Hua, Talanta 190, 278 (2018).
[21] B.-H. Zhang, F.-Y. Wu, Y.-M. Wu, X.-S. Zhan, J. Fluoresc. 20, 243 (2010).
[22] H. Bhardwaj, C. Singh, M. kumar Pandey, G. Sumana, Sensor. Actuat. B-Chem. 231, 624 (2016).
[23] R. Ban, J.-j. Zhu, J. Zhang, Microchim. Acta 181, 1591 (2014).
[24] X. Tan, S. Liu, Y. Shen, Y. He, J. Yang, Spectrochim. Acta A 133, 66 (2014).
[25] Y. Gong, H. Wu, Z. Fan, Anal. Lett. 46, 2454 (2013).
[26] W.C. Chan, S. Nie, Science 281, 2016 (1998).
[27] N. Pradhan, D. Goorskey, J. Thessing, X. Peng, J. Am. Chem. Soc. 127, 17586 (2005).
[28] H. Labiadh, B. Sellami, A. Khazri, W. Saidani, S. Khemais, Optic. Mater. 64, 179 (2017).
[29] J. Suyver, S. Wuister, J. Kelly, A. Meijerink, Nano Lett. 1, 429 (2001).
[30] A. Bol, A. Meijerink, Phy. Rev. B 58, R15997 (1998).
[31] P. Wu, X.-P. Yan, Chem. Soc. Rev. 42, 5489 (2013).
[32] E. Sotelo-Gonzalez, M.T. Fernandez-Argüelles, J.M. Costa-Fernandez, A. Sanz-Medel, Anal. Chim. Acta 712, 120 (2012).
[33] M. Cao, M. Liu, C. Cao, Y. Xia, L. Bao, Y. Jin, S. Yang, C. Zhu, Spectrochim. Acta A 75, 1043 (2010).
[34] N. S. Nirmala Jothi, G. J. Amish, R. J. Vijay, Mater. Chem. Phy. 138, 186 (2013).
[35] Y. Motlan, G. Zhu, K. D. Tomsia, K. McBean, M. R. Phillips, E. M. Goldys, Optic. Mater. 29, 1579 (2007).
[36] S. Shtykov, T. Smirnova, Y.G. Bylinkin, N. Kalashnikova, D. Zhemerichkin, J. Anal. Chem. 62, 136 (2007).
[37] W. Gau, H. Ploschke, K. Schmidt, B. Weber, J. liquid Chromatogr. 8, 485 (1985).
[38] M.T. Maya, N.J. Gonçalves, N.B. Silva, J.A. Morais, J. Chromatogr. B 755, 305 (2001).
[39] M. Hernández, C. Aguilar, F. Borrull, M. Calull, J. Chromatogr. B 772, 163 (2002).
[40] H. Yi, C. Li, Russian J. Electrochem. 43, 1377 (2007).
[41] L. Fotouhi, M. Alahyari, Colloid. Surf. B 81, 110 (2010).
[42] A.A. Ensafi, A.R. Allafchian, R. Mohammadzadeh, Anal. Sci. 28, 705 (2012).
[43] A.H. Kamel, W.H. Mahmoud, M.S. Mostafa, Anal. Meth. 3, 957 (2011).
[44] H.M. Oliveira, F.T. Moreira, M.G.F. Sales, Electrochim. Acta 56, 2017 (2011).
[45] F. Faridbod, T. Poursaberi, P. Norouzi, M.R. Ganjali, Int. J. Electrochem. Sci. 7, 3693 (2012).
[46] S. Mostafa, M. El-Sadek, E.A. Alla, J. Pharmacol. Biomed. Anal. 27, 133 (2002).
[47] M.I. Pascual-Reguera, G.P. Parras, A.M. Dı́az, Microchem. J. 77, 79 (2004).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP