JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 66 No 3 (2021): Journal of the Chilean Chemical Society
Original Research Papers

COMPARATIVE INSIGHTS INTO HYDROGEN ABSTRACTION OF CCl3H BY SMALL OXYGEN-CONTAINING ANIONS MO− WITH M = Be, B, AND Al

Published September 14, 2021
Keywords
  • diatomic anion; H-atom abstraction; quantum chemical calculation
How to Cite
junxi, liang, Yu, D., Jun, B., Qiong, S., Zhenhua, L., & Lili, Z. (2021). COMPARATIVE INSIGHTS INTO HYDROGEN ABSTRACTION OF CCl3H BY SMALL OXYGEN-CONTAINING ANIONS MO− WITH M = Be, B, AND Al. Journal of the Chilean Chemical Society, 66(3), 5273-5279. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1800

Abstract

In the present work, the considered hydrogen abstraction (HAT) reactions of CCl3H molecule driven by three different small anions MO− (M = Be, B, and Al) have been investigated using electronic structure calculations. While full geometry optimizations were operated to locate all of the relevant stationary points using the DFT-BHandHLYP/aug-cc-pVTZ level, the potential-energy profiles were constructed using the coupled-cluster theory with extrapolation to complete basis set CCSD(T)/CBS. Our theoretical findings suggest that the most favored pathway determined for the HAT reactions mainly stems from the MO− type, namely, for facilitating the HAT pathway the B atom is predicted to be an inherent key in the BO−-reaction whereas it becomes O atom in both BeO−- and AlO−-reactions. Of the three favored pathways obtained here, the activations of the CCl3H in the presence of both BeO− and AlO− anions are significantly efficient, in which the energy barrier for the cleavage of the C-H bond with the assistance of BeO− was to be relatively low. Again, through the transition state theory the rate constants at 298-1000 K are also evaluated for the most favored HAT reactions studied here, indicating the lower the temperature, the faster the BO− chemical reaction.

 

1800.jpg

References

  1. W.P. Hu, D.G. Truhlar, J. Am. Chem. Soc. 118, 860 (1996)
  2. S.M. Villano, S. Kato, W.C. Lineberger, V.M. Bierbaum, J. Am. Chem. Soc. 128, 736 (2006)
  3. S.A. Couchman, N. Holzmann, G. Frenking, D.J.D. Wilson, J.L. Dutton, Dalton Trans. 42, 11375 (2013)
  4. K.J. Iversen, S.A. Couchman, D.J.D. Wilson, J.L. Dutton, Coord. Chem. Rev. 40, 297 (2015)
  5. B.J. Barker, I.O. Antonov, J.M. Merritt, V.E. Bondybey, M.C. Heaven, R. Dawes, J. Chem. Phys. 137, 214313 (2012)
  6. K.J. Mascaritolo, A.R. Dermer, M.L. Green, A.M. Gardner, M.C. Heaven, J. Chem. Phys. 146, 054301 (2017)
  7. M.C. Heaven, J. M. Merritt, V.E. Bondybey, Annu. Rev. Phys. Chem. 62, 375 (2011)
  8. M.C. Heaven, V.E. Bondybey, J.M. Merritt, A. L. Kaledin, Chem. Phys. Lett. 506, 1 (2011)
  9. J.L. Dutton, G. Frenking, Angew. Chem., Int. Ed. 55, 13380 (2016)
  10. A. Veldkamp, G. Frenking, Chem. Phys. Lett. 226, 11 (1994)
  11. G. Frenking, S. Dapprich, K.F. Koehler;, W. Koch, J.R. Collins, Mol. Phys. 89, 1245 (1996)
  12. (a) J.V. Ortiz, Chem. Phys. Lett. 296, 494 (1998). (b) C. Zenouda, P. Blottiau, G. Chambaud, P. Rosmus, J. Mol. Struct. (THEOCHEM) 458, 61 (1999)
  13. J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer, S. Nandi, G.B. Ellison, Chem. Rev. 102, 231 (2002)
  14. P.G. Wenthold, J.B. Kim, K.L. Jonas, W.C. Lineberger, J. Phys. Chem. A 101, 4472 (1997)
  15. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th ed., John Wiley & Sons: New York (1999)
  16. P.M. Hierl, M.J. Henchman, J.F. Paulson, Int. J. Mass Spectrom. Ion Processes 117, 475 (1992)
  17. P.M. Hierl, J.F. Paulson, M.J. Henchman, J. Phys. Chem. 99, 15655 (1995)
  18. J. Xie, R. Sun, M.R. Siebert, R. Otto, R. Wester, W.L. Hase, J. Phys. Chem. A 117, 7162 (2013)
  19. J. Xie, S.C. Kohale, W.L. Hase, S.G. Ard, J.J. Melko, N.S. Shuman, A.A. Viggiano, J. Phys. Chem. A 117, 14019 (2013)
  20. S. Ingemann, R.H. Fokkens, N.M.M. Nibbering, J. Org. Chem. 56, 607 (1991)
  21. R.N. McDonald, A.K. Chowdhury, D.W. Setser, J. Am. Chem. Soc. 103, 6599 (1981)
  22. R.N. McDonald, A.K. Chowdhury, W.D. McGhee J. Am. Chem. Soc. 106, 4112 (1984)
  23. Y. Guo, J.J. Grabowski, Int. J. Mass Spectrom. Ion Processes 97, 253 (1990)
  24. H.E.K. Matimba, A.M. Crabbendam, S. Ingemann, N.M.M. Nibbering, J. Chem. Soc. Chem. Commun. 9, 644 (1991)
  25. Y. Guo, J.J. Grabowski, J. Am. Chem. Soc. 113, 5923 (1991)
  26. H.E.K. Matimba, A.M. Crabbendam, S. Ingemann, N.M.M. Nibbering, Int. J. Mass Spectrom. Ion. Processes 114, 85 (1992)
  27. M. Born, S. Ingemann, N.M.M. Nibbering, J. Am. Chem. Soc. 116, 7210 (1994)
  28. J.-X. Liang, Q. Su, D.-Z. Zhao, Y.-B. Wang, G.-H. Li, Z.-Y. Geng, Heteroatom Chem. 27, 199 (2016)
  29. T.D. Hang, M.T. Nguyen, J. Phys. Chem. A 122, 5132 (2018)
  30. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03 (Revision E.01), Gaussian, Inc., Wallingford CT (2004)
  31. (a) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988). (b) A.D. Becke, J. Chem. Phys. 98, 1372 (1993)
  32. (a) J.-X. Liang, Y.-B. Wang, Q. Zhang, Y. Li, Z.-Y. Geng, X.-H. Wang, J. Mol. Model. 19, 1739 (2013). (b) J.-X. Liang, Q. Su, Y.-B. Wang, Z.-Y. Geng, B. Chem. Soc. Jap. 88, 110 (2015)
  33. U. Wille, T. Dreessen, J. Phys. Chem. A 110, 2195 (2006)
  34. U. Wille, J.C.-S. Tan, E.K. Mucke, J. Org. Chem. 73, 5821 (2008)
  35. S.H. Kyne, C.H. Schiesser, H. Matsubara, J. Org. Chem. 73, 427 (2008)
  36. K.J. Mascaritolo, A.R. Dermer, M.L. Green, A.M. Gardner, M.C. Heaven, J. Chem. Phys. 146, 054301 (2017)
  37. H.-J. Zhai, L.-M. Wang, S.-D. Li, L.-S. Wang, J. Phys. Chem. A 111, 1030 (2007)
  38. P.G. Wenthold, J.B. Kim, K.-L. Jonas, W.C. Lineberger, J. Phys. Chem. A 101, 4472 (1997)
  39. R.A. Kendall, T.H. Dunning, Jr., R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)
  40. K. Fukui, Acc. Chem. Res. 14, 363 (1981)
  41. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)
  42. R.M. Parrish, L.A. Burns, D.G.A. Smith, A.C. Simmonett, A.E. DePrince, E.G. Hohenstein, U. Bozkaya, A.Y. Sokolov, R. Di Remigio, R.M. Richard, J.F. Gonthier, A.M. James, H.R. McAlexander, A. Kumar, M. Saitow, X. Wang, B.P. Pritchard, P. Verma, H.F. Schaefer, K. Patkowski, R.A. King, E.F. Valeev, F.A. Evangelista, J.M. Turney, T.D. Crawford, C.D. Sherrill, J. Chem. Theory Comput. 13, 3185 (2017)
  43. H.J. Eyring, Chem. Phys. 3, 107 (1935)
  44. M.G. Evans, M. Polanyi, Trans. Faraday Soc. 31, 875 (1935)
  45. E.J. Wigner, Chem. Phys. 5, 720 (1937)
  46. B. Jia, J. Laib, R.F.M. Lobo, P.R. Brooks, J. Am. Chem. Soc. 124, 13896 (2002)
  47. A.R. Dermer, M.L. Green, K.J. Mascaritolo, M.C. Heaven, J. Phys. Chem. A 121, 5645 (2017)
  48. M.V. Basilevsky, V.M. Ryaboy, Chem. Phys. Lett. 129, 71 (1986)
  49. S. Schmatz, D.C. Clary, J. Chem. Phys. 109, 8200 (1998)
  50. S. Schmatz, P. Botschwina, J. Hauschildt, R. Schinke, J. Chem. Phys. 117, 9710 (2002)
  51. C. Henning, S. Schmatz, J. Chem. Phys. 121, 220 (2004)
  52. C. Henning, S. Schmatz, J. Chem. Phys. 122, 234307 (2005)
  53. C. Henning, R.B. Oswald, S. Schmatz, J. Phys. Chem. A 110, 3071 (2006)
  54. C.-H. Chin, A.M. Mebel, D.-Y. Hwang, J. Phys. Chem. A 108, 473 (2004)
  55. E.R. Talaty, Y. Huang, M.E. Zandler, J. Am. Chem. Soc. 113, 779 (1991)
  56. M.T. Nguyen, P.J. Groarke, T.-K. Ha, Mol. Phys. 75, 1105 (1992)
  57. T.-K. Ha, J. Makarewicz, Chem. Phys. Lett. 299, 637 (1999)
  58. C.A. Richards, G. Vacek, B.J. Deleeuw, Y. Yamaguchi, H.F. Schaefer III, J. Chem. Phys. 102, 1280 (1995)
  59. J.L. Gole, H.H. Michels, J. Chem. Phys. 103, 7844 (1995)
  60. A.I. Boldyrev, J. Simons, J. Chem. Phys. 110, 3765 (1999)
  61. M. Sobczyk, I. Anusiewicz, P. Skurski, J. Simons, Mol. Phys. 101, 1259 (2003)
  62. K.J. Borve, L.G.M. Pettersson, J. Phys. Chem. 95, 3214 (1991)
  63. J.R. Scott, G.S. Groenewold, A.K. Gianotto, M.T. Benson, J. Phys. Chem. A 104, 7079 (2000)
  64. T. Baer, W.L. Hase, Unimolecular Reaction Dynamics Theory and Experiments, Oxford: New York (1996)
  65. Y. Ren, J.-G. Gai, Y. Xiong, K.H. Lee, S.-Y. Chu, J. Phys. Chem. A 111, 6615 (2007)

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP