JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 66 No 4 (2021): Journal of the Chilean Chemical Society
Original Research Papers

INVESTIGATION OF “MCM-22”, “ZSM-12 & 35 COMPOSITE”, AND “ZEOLITE AL-MORDENITE & ZSM-39 COMPOSITE” CRYSTALS BY ANALYSIS OF CHARACTERIZATION TECHNIQUES

Mina Kamani
Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, 11365-4435, Iran
Published December 29, 2021
Keywords
  • Aluminosilicate,
  • Catalyst,
  • MCM-22,
  • ZSM-12 & 35 Composite,
  • Zeolite Al-mordenite & ZSM-39 Composite,
  • Zeolite Crystallization
  • ...More
    Less
How to Cite
Kamani, M., Rahmati, M., Vandani , S. A. K., & Fard, G. C. (2021). INVESTIGATION OF “MCM-22”, “ZSM-12 & 35 COMPOSITE”, AND “ZEOLITE AL-MORDENITE & ZSM-39 COMPOSITE” CRYSTALS BY ANALYSIS OF CHARACTERIZATION TECHNIQUES. Journal of the Chilean Chemical Society, 66(4), 5332-5338. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1865

Abstract

Zeolites are three-dimensional, microporous, crystalline solids with well-defined structures that contain aluminum, silicon, and oxygen in their form. Cations and water are located in the pores of zeolites. They have a framework structure, in which interconnected cavities are occupied by large metal cations (positively charged ions), and water molecules. The formation of specific zeolites can occur by more than one crystallization pathway. Control in the crystallization pathway can lead to the formation of different species. In this study, two new zeolite nanocomposites were synthesized using fixed raw materials including solvent, reagent (which acts as a template in the formation of zeolite morphology), silica source, and sodium hydroxide alkali. “MCM-22” mesoporous was first synthesized and then a new morphology of “MCM-22” was synthesized by changing the temperature, time, and amount of water. Also, two nanocomposites “ZSM-12 & 35 Composite” and “Zeolite Al-mordenite & ZSM-39 Composite” were synthesized with very different properties in terms of surface to volume ratio, acidity, specific surface area, ratio of Si to Al, and three-dimensional crystal structure. Various characterization techniques were used to provide information to better understand the structural properties of crystalline zeolites. They were then characterized, and analyzed using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier-Transform Infrared Spectroscopy (FTIR), Energy-Dispersive X-ray Spectroscopy (EDS), Mapping, and BET/BJH (Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH)) techniques. The results showed that the synthetic zeolites, despite having the same precursors, differed in terms of surface to volume ratio, acidity, specific surface area, Si/Al ratio, and three-dimensional crystal structure.

 

1865.JPG

References

  1. M. S. Seyedi, M. Bahmaei, A. Farshi, Orient. J. Chem 31, 2409, (2015).
  2. C. R. Patil, P. S. Niphadkar, V. V. Bokade, P. N. Joshi, Catal. Commun. 43, 188, (2014).
  3. Z. S. Lin, D. Chen, H. Y. Nie, Y. A. Wong, Y. Huang, Can. J. Chem 97, 840, (2019).
  4. M. A. Camblor, S. Bong Hong, J. Porous Mater.265, (2010).
  5. H. M. Lankapati, D. R. Lathiya, L. Choudhary, A. K. Dalai, K. C. Maheria, ChemistrySelect 5, 1193, (2020).
  6. H. E. Hoydonckx, D. E. De Vos, S. A. Chavan, P. A. Jacobs, Top Catal 27, 83, (2004).
  7. J. L. Ropero-Vega, A. Aldana-Pérez, R. Gómez, M. E. Niño-Gómez, APPL CATAL A-GEN 379, 24, (2010).
  8. Y. Chen, X. Zhang, M. Dong, Y. Wu, G. Zheng, J. Huang, X. Zheng, J Taiwan Inst Chem Eng 61, 147, (2016).
  9. F. D. Pileidis, M. Tabassum, S. Coutts, M. M. Titirici, Chinese J. Catal 35, 929, (2014).
  10. U. Laska, C. G. Frost, G. J. Price, P. K. Plucinski, J. Catal. 268, 318, (2009).
  11. R.M. Barrer, W.M. Meier, Trans. Faraday Soc. 54, 1074, (1958).
  12. Y. Posada, AIP, 126108, (2009).
  13. A. V. Agafonov, E. P. Grishina, Russ. J. Inorg 64, 1641, (2019).
  14. P. T. Anastas, M. M. Kirchhoff, T. C. Williamson, APPL CATAL A-GEN 221, 3, (2001).
  15. E. I. Negishi, L. Anastasia, Chem. Rev. 103, 1979, (2003).
  16. J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, J. C. Groen, Chem. Soc. Rev. 37, 2530, (2008).
  17. S. Amiri Khoshkar Vandani, R. Fazaeli, M. Giahi Saravani, H. Pasdar, Egypt. J. Chem., (2021).
  18. L. B. McCusker, C. Baerlocher, D. Olson, Atlas of zeolite framework types. Elsevier sci., (2007).
  19. Q. Wang, S. Zhang, G. Cai, F. Li, L. Xu, Z. Huang, Y. Li, U.S. Patent No. 6,093,866. Washington, DC: U.S. Patent and Trademark Office, (2000).
  20. G. T. Kokotailo, US 4,229,424, (1980).
  21. G. T. Kokotailo, US 4,289,607, (1981).
  22. I. P. Dzikh, J. M. Lopes, F. Lemos, F. R. Ribeiro, APPL CATAL A-GEN 176, 239, (1999).
  23. I. P. Dzikh, J. M. Lopes, F. Lemos, F. R. Ribeiro, Catal. Today 65, 143, (2001).
  24. N., Bazdid-Vahdaty, M., Mamaghani, B., Khalili, F. Tavakoli, J. Chil. Chem. Soc 66, 5136, (2021).
  25. Y. Han, F. S. Xiao, Chinese J. Catal 24, 149, (2003).
  26. M. Rahmati, R. Fazaeli, M. G. Saravani, R. Ghiasi, Phys. Chem. Res. 8, 585, (2020).
  27. V. A. Ostroumova, A. L. Maksimov, Pet. Chem. 59, 788, (2019).
  28. S. L. Lawton, M. E. Leonowicz, R. D. Partridge, P. Chu, M. K. Rubin, MICROPOR MESOPOR MAT 23, 109, (1998).
  29. H. Hoseini, M. Gorjizadeh, S. Sayyahi, K. A. SHAHBAZI, 131, (2017).
  30. A. Corma, U. Diaz, V. Fornés, J. M. Guil, J. Martinez-Triguero, E. J. Creyghton, J. Catal. 191, 218, (2000).
  31. L. L. Korobitsyna, L. M. Velichkina, A. V. Vosmerikov, V. I. Radomskaya, E. S. Astapova, N. V. Ryabova, O. A. Agapyatova, Russ. J. Inorg 53, 169, (2008).
  32. X. Wei, P. G. Smirniotis, MICROPOR MESOPOR MAT 89, 170, (2006).
  33. J. A. Martens, J. Perez-Pariente, E. Sastre, A. Corma, P. A. Jacobs, Appl. Catal. 45, 85, (1988).
  34. S. Mehla, K. R. Krishnamurthy, B. Viswanathan, M. John, Y. Niwate, K. Kumar, B. L. Newalkar, J. Porous Mater 20, 1023, (2013).
  35. W. Zhang, P. G. Smirniotis, J. Catal. 182, 400, (1999).
  36. I. Rahmin, A. Huss Jr, D. N. Lissy, D. J. Klocke, W. O. Haag, U.S. Patent No. 5,449,851. Washington, DC: U.S. Patent and Trademark Office, (1995).
  37. Z. Wu, Q. Wang, L. Xu, S. Xie, Stud Surf Sci Catal142, 747, (2002).
  38. J. L. Schlenker, F. G. Dwyer, E. E. Jenkins, W. J. Rohrbaugh, G. T. Kokotailo, W. M. Meier, Nature 294, 340, (1981).
  39. C. Xue, T. Xu, Mater. Lett. 112, 200, (2013).
  40. A. Corma, Chem. Rev. 97, 2373, (1997).
  41. A. Mech, A. Monguzzi, F. Meinardi, J. Mezyk, G. Macchi, R. Tubino, J Am Chem Soc 132, 4574, (2010).
  42. Y. Wang, H. Li, L. Gu, Q. Gan, Y. Li, G. Calzaferri, MICROPOR MESOPOR MAT 121, 1, (2009).
  43. Y. Ding, Y. Wang, H. Li, Z. Duan, H. Zhang, Y. Zheng, J. Mater. Chem. 21, 14755, (2011).
  44. R. B. Borade, Zeolites 7, 398, (1987).
  45. A. Huang, J. Caro, J. Cryst. Growth 311, 4570, (2009).
  46. U. Deforth, K. K. Unger, F. Schüth, Microporous MAT 9, 287, (1997).
  47. H. Sasaki, H. Jon, M. Itakura, T. Inoue, T. Ikeda, Y. Oumi, T. Sano, J. Porous Mater 16, 465, (2009).
  48. X. Tang, Y. Sun, T. Wu, L. Wang, L. Fei, Y. Long, J. Chem. Soc. Faraday Trans. 89, 1839, (1993).
  49. H. Gies, F. Liebau, H. Gerke, Angewandte Chemie International Edition in English 21, 206, (1982).
  50. Y. Long, H. He, P. Zheng, G. Wu, B. Wang, J. Incl. Phenom. 5, 355, (1987).
  51. J. J. Seral, S. Uriel, J. Coronas, Wiley, (2008).
  52. M. Song, X. Wang, W. Zhou, H. He, Y. Sun, T. Wu, Y. Long, J. Solid State Chem 164, 19, (2002).
  53. J. Dong, X. Tong, J. Yu, H. Xu, L. Liu, J. Li, Mater. Lett. 62, 4, (2008).
  54. D. M. Bibby, L. M. Parker, Zeolites 3, 11, (1983).
  55. B. Marler, N. Dehnbostel, H. H. Eulert, H. Gies, F. Liebau, J. Incl. Phenom. 4, 339, (1986).
  56. Z. A. Lethbridge, D. S. Keeble, D. Walker, P. A. Thomas, R. I. Walton, J. Appl. Crystallogr. 43, 168, (2010).
  57. A. N. Van Laak, S. L. Sagala, J. Zečević, H. Friedrich, P. E. De Jongh, K. P. De Jong, x J. Catal. 276, 170, (2010).
  58. E. M. Flanigen, Stud Surf Sci Catal 137, 11, (2001).
  59. S. Narayanan, P. Tamizhdurai, V. L. Mangesh, C. Ragupathi, A. Ramesh, RSC Advances 11, 250, (2021).
  60. C. Perego, R. Millini, Chem. Soc. Rev. 42, 3956, (2013).
  61. Z. Ma, J. Xie, J. Zhang, W. Zhang, Y. Zhou, J. Wang, MICROPOR MESOPOR MAT 224, 17, (2016).
  62. S. K. Wahono, A. Suwanto, D. J. Prasetyo, T. H. Jatmiko, K. Vasilev, Appl. Surf. Sci 483, 940, (2019).
  63. L. B. McCusker, C. Baerlocher, Introduction to Zeolite science and practice 168, 13, (2007).
  64. M. Smaihi, O. Barida, V. Valtchev, EurJIC 2003, 4370, (2003).
  65. K. N. Bozhilov, T. T. Le, Z. Qin, T. Terlier, A. Palčić, J. D. Rimer, V. Valtchev, Sci. Adv. 7, eabg0454, (2021).
  66. G., Harvey, L. S. Dent Glasser, (1989).
  67. P. Singh, T. Dowling, J. Watson, J. White, Phys. Chem. 1, 4125, (1999).
  68. J. Shi, M. W. Anderson, S. W. Carr, Chem. Mater. 8, 369, (1996).
  69. P. P. E. de Moor, T. P. Beelen, R. A. van Santen, Microporous MAT 9, 117, (1997).
  70. X. Li, K. Li, H. Ma, R. Xu, S. Tao, Z. Tian, MICROPOR MESOPOR MAT 217, 54, (2015).
  71. A. S. Fung, S. L. Lawton, W. J. Roth, U.S. Patent No. 5,362,697, (1994).
  72. R. Mokaya, ChemPhysChem 3, 360, (2002).
  73. R. Fazaeli, N. E. Fard, Russ. J. Appl. Chem 93, 973, (2020).
  74. D. Nath, F. Singh, R. Das, MATER CHEM PHYS 239, 122021, (2020).
  75. M. Kamani, R. Fazaeli, M. Arjmand, M. Ghorbani, Phys. Chem. Res. 8, 175, (2020).
  76. L., Nassaji-Jahromi, R., Fazaeli, R., Behjatmanesh-Ardakani, M. Taghdiri, J. Chil. Chem. Soc 65, 5027, (2020).
  77. B. Gil, W. J. Roth, J. Grzybek, A. Korzeniowska, Z. Olejniczak, M. Eliáš, J. Čejka, Catal. Today 304, 22, (2018).
  78. X. Niu, Y. Song, S. Xie, S. Liu, Q. Wang, L. Xu, Catal. Lett. 103, 211, (2005).
  79. O. Igbari, Y. Xie, Z. Jin, L. S. Liao, J. Alloys Compd. 653, 219, (2015).
  80. P. Dugkhuntod, T. Imyen, W. Wannapakdee, T. Yutthalekha, S. Salakhum, C. Wattanakit, RSC advances 9, 18087, (2019).
  81. S. Kim, S. Philippot, S. Fontanay, R. E. Duval, E. Lamouroux, N. Canilho, A. Pasc, RSC advances 5, 90550, (2015).
  82. J. Si, L. Li, Y. Zhang, J. C. Zhou, W. Ouyang, MRC 6, 15, (2017).
  83. J. Zhou, X. Yang, Y. Wang, W. Chen, Catal. Commun. 46, 228, (2014).
  84. N. E. Fard, R. Fazaeli, M. Yousefi, S. Abdolmohammadi, Appl. Phys. A 125, 1, (2019).
  85. N. E. Fard, R. Fazaeli, M. Yousefi, S. Abdolmohammadi, Chem. Select 4, 9529, (2019).
  86. D. Pérez-Quintanilla, I. Del Hierro, M. Fajardo, I. Sierra, J. Hazard. Mater. 134, 245, (2006).
  87. G. Tang, M. Li, B. Wang, Y. Fang, T. Tan, MICROPOR MESOPOR MAT 265, 172, (2018).
  88. M. A. Klunk, S. B. Schröpfer, S. Dasgupta, M. Das, N. R. Caetano, A. N. Impiombato, C. A. M. Moraes, Chem. Papers, 1, (2020).
  89. M. Kamani, R. Fazaeli, M. Arjmand, M. Hossein Ghorbani, J. Chil. Chem. Soc 65, 4833, (2020).
  90. S. A. K. Vandani, R. Fazaeli, M. G. Saravani, H. Pasdar, J. Environ. Eng. Sci. 40, 1, (2021).
  91. M. S. Rahmati, R. Fazaeli, M. G. Saravani, R. Ghiasi, J Nanostruct, 1, (2021).
  92. M. Khanmoradi, M. Nikoorazm, A. Ghorbani‐Choghamarani, Appl 31, e3693, (2017).
  93. I. Mochida, S. Eguchi, M. Hironaka, S. I. Nagao, K. Sakanishi, D. D. Whitehurst, Zeolites 18, 142, (1997).
  94. W. M. Meier, D. H. Olson, C. Baerlocher, Zeolites 17, (1996).
  95. P. Selvarengan, P. Kolandaivel, Journal of Molecular Structure: THEOCHEM 617, 99, (2002).
  96. S. B. Allin, T. M. Leslie, R. S. Lumpkin, Chem. Mater. 8, 428, (1996).
  97. A. J. Aquino, D. Tunega, G. Haberhauer, M. H. Gerzabek, H. Lischka, J. Phys. Chem. A 106, 1862, (2002).
  98. T. S. Vishkaee, R. Fazaeli, M. Yousefi, Russ. J. Inorg 64, 237, (2019).
  99. M. Iranpour, R. Fazaeli, M. S. Sadjadi, M. Yousefi, Russ. J. Inorg 63, 1079, (2018).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP