JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 67 No 2 (2022): Journal of the Chilean Chemical Society
Original Research Papers

EVALUATION OF IN-VITRO ANTIBACTERIAL ACTIVITY AGAINST GRAM-NEGATIVE BACTERIA USING SILVER NANOPARTICLES SYNTHESIZED FROM DYPSIS LUTESCENS LEAF EXTRACT

Akshaya T
Bio
Aravind M
Bio
Manoj Kumar S
Bio
DIVYA Baskaran
Dr
Published June 24, 2022
Keywords
  • Dypsis lutescens,
  • silver nanoparticles,
  • XRD,
  • Escherichia coli,
  • Vibrio cholerae
How to Cite
T, A., M, A., S, M. K., & Baskaran, D. (2022). EVALUATION OF IN-VITRO ANTIBACTERIAL ACTIVITY AGAINST GRAM-NEGATIVE BACTERIA USING SILVER NANOPARTICLES SYNTHESIZED FROM DYPSIS LUTESCENS LEAF EXTRACT. Journal of the Chilean Chemical Society, 67(2), 5477-5483. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/1890

Abstract

Recent advances in nanotechnology and the synthesis of nanoparticles through biosynthesis have increased the urge in scientists than for chemical or physical methods. The biosynthesis method is the most significant method than a conventional method because of its eco-friendly, low cost and rapid synthesizing process. The present study describes the antibacterial activity of silver nanoparticles (AgNPs) synthesized from leaf extracts of Dypsis lutescens. The synthesis of AgNPs was confirmed by colour change from light yellow to brown colour. Further, the morphology of the biosynthesized nanoparticles, average size and presence of functional groups were characterized by UV – Visible spectroscopy (UV-Vis), X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy, respectively. The UV spectra results show a strong resonance center and surface of silver nanoparticles at 450 nm. XRD studies revealed that the synthesized AgNPs show crystalline in shape. The FT-IR spectrum described the biological molecules which stabilize and form the silver nanoparticles in the aqueous medium. The average AgNPs size was found to be 31 nm by using the Debye-Scherrer formula. The antimicrobial property of AgNPs was tested against Escherichia coli (MTCC 443) and Vibrio cholerae (MTCC 3906) pathogen, which showed maximum zones of inhibition of 22 mm at a concentration of 100 µL. Therefore, the biosynthesized AgNPs proved to have significant antibacterial activity.

1890.JPG

References

  1. Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2015). Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Materials science and engineering: C, 49, 373-381.
  2. Alomar, T. S., AlMasoud, N., Awad, M. A., El-Tohamy, M. F., & Soliman, D. A. (2020). An eco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, pharmaceutical and biomedical applications. Materials Chemistry and Physics, 249, 123007.
  3. Anselmo, A. C., & Mitragotri, S. (2021) Nanoparticles in the Clinic: An Update Post COVID‐19 Vaccines. Bioengineering & Translational Medicine, e10246.
  4. Astruc, D. (2020). Introduction: nanoparticles in catalysis. Chemical reviews, 120(2), 461-463.
  5. Azizi, M., Sedaghat, S., Tahvildari, K., Derakhshi, P., & Ghaemi, A. (2017). Synthesis of silver nanoparticles using Peganum harmala extract as a green route. Green Chemistry Letters and Reviews, 10(4), 420-427.
  6. Babu, S. A., & Prabu, H. G. (2011). Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature. Materials Letters, 65(11), 1675-1677.
  7. Balasooriya, E. R., Jayasinghe, C. D., Jayawardena, U. A., Ruwanthika, R. W. D., Mendis de Silva, R., & Udagama, P. V. (2017). Honey mediated green synthesis of nanoparticles: new era of safe nanotechnology. Journal of Nanomaterials, 2017.
  8. Balasubramaniam, B., Prateek, Ranjan, S., Saraf, M., Kar, P., Singh, S. P., ... & Gupta, R. K. (2020). Antibacterial and antiviral functional materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacology & Translational Science, 4(1), 8-54.
  9. Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., & Alcudia, A. (2020). Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 10(7), 1403.
  10. Bhagat, M., Anand, R., Datt, R., Gupta, V., & Arya, S. (2019). Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. Journal of Inorganic and Organometallic Polymers and Materials, 29(3), 1039-1047.
  11. Bharathi, D., Josebin, M. D., Vasantharaj, S., & Bhuvaneshwari, V. (2018). Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. Journal of Nanostructure in Chemistry, 8(1), 83-92.
  12. Bolbanabad, E. M., Ashengroph, M., & Darvishi, F. (2020). Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using Yarrowia lipolytica and their antibacterial activity. Process Biochemistry, 94, 319-328.
  13. Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71.
  14. Calvino, C., Macke, N., Kato, R., & Rowan, S. J. (2020). Development, processing and applications of bio-sourced cellulose nanocrystal composites. Progress in Polymer Science, 103, 101221.
  15. Chiduruppa, M., Ahmad, F., & Pandian, P. (2018). A detailed review on Dypsis lutescens (Arecaceae). World Journal of Pharmacy and Pharmaceutical Sciences, 7, 1644-1650.
  16. Chiduruppa, M., Ahmad, F., & Pandian, P. (2018). A detailed review on Dypsis lutescens (Arecaceae). World Journal of Pharmacy and Pharmaceutical Sciences, 7, 1644-1650.
  17. Dahibhate, N. L., Roy, U., & Kumar, K. (2020). Phytochemical screening, antimicrobial and antioxidant activities of selected mangrove species. Current Bioactive Compounds, 16(2), 152-163.
  18. Dehghanizade, S., Arasteh, J., & Mirzaie, A. (2018). Green synthesis of silver nanoparticles using Anthemis atropatana extract: characterization and in vitro biological activities. Artificial cells, nanomedicine, and biotechnology, 46(1), 160-168.
  19. El Shafey, A. M. (2020). Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis, 9(1), 304-339.
  20. Elangovan, K., Elumalai, D., Anupriya, S., Shenbhagaraman, R., Kaleena, P. K., & Murugesan, K. (2015). Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. Journal of Photochemistry and Photobiology B: Biology, 151, 118-124.
  21. El-Ghonemy, M. M., El-Kashak, W. A., Mohamed, T. K., Omara, E. A., Hussein, J., Farrag, A. R. H., ... & El-Kady, M. Y. (2019). Hepatoprotective activity of Dypsis lutescens against D-galactosamine-induced hepatotoxicity in rats and its phytoconstituents. Asian Pacific Journal of Tropical Biomedicine, 9(11), 467.
  22. Elumalai, E. K., Prasad, T. N. V. K. V., Hemachandran, J., Therasa, S. V., Thirumalai, T., & David, E. (2010). Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res, 2(9), 549-554.
  23. Esmaielzadeh, S., Shekoohi, K., Sharif-Mohammadi, M., Mashhadiagha, G., & Mohammadi, K. (2015). Synthesis, characterization, spectral Studies, antibacterial evaluation, thermodynamics and DFT calculations of dimethyltin (IV) dichloride Schiff base. Acta Chimica Slovenica, 62(4), 805-817.
  24. Esmaile, F., Koohestani, H., & Abdollah-Pour, H. (2020). Characterization and antibacterial activity of silver nanoparticles green synthesized using Ziziphora clinopodioides extract. Environmental Nanotechnology, Monitoring & Management, 14, 100303.
  25. Fatima, R., Priya, M., Indurthi, L., Radhakrishnan, V., & Sudhakaran, R. (2020). Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microbial pathogenesis, 138, 103780.
  26. George, J. M., Antony, A., & Mathew, B. (2018). Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta, 185(7), 1-26.
  27. Gopinath, K., Gowri, S., & Arumugam, A. (2013). Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. Journal of nanostructure in chemistry, 3(1), 1-7.
  28. Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial cells, nanomedicine, and biotechnology, 47(1), 844-851.
  29. Gudikandula, K., & Charya Maringanti, S. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11(9), 714-721.
  30. Halkai, K. R., Mudda, J. A., Shivanna, V., Rathod, V., & Halkai, R. S. (2017). Biosynthesis, characterization and antibacterial efficacy of silver nanoparticles derived from endophytic fungi against P. gingivalis. Journal of clinical and diagnostic research: JCDR, 11(9), ZC92.
  31. Holder, I. A., & Boyce, S. T. (1994). Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns, 20(5), 426-429.
  32. Hou, X., Zhang, X., Zhao, W., Zeng, C., Deng, B., McComb, D. W., ... & Dong, Y. (2020). Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nature nanotechnology, 15(1), 41-46.
  33. Iravani, S., & Varma, R. S. (2020). Bacteria in heavy metal remediation and nanoparticle biosynthesis. ACS Sustainable Chemistry & Engineering, 8(14), 5395-5409.
  34. Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174.
  35. Kalishwaralal, K., Deepak, V., Pandian, S. R. K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., & Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and surfaces B: Biointerfaces, 77(2), 257-262.
  36. Kanchi, S., & Ahmed, S. (Eds.). (2018). Green metal nanoparticles: synthesis, characterization and their applications. John Wiley & Sons.
  37. Kathiravan, V., Ravi, S., Ashokkumar, S., Velmurugan, S., Elumalai, K., & Khatiwada, C. P. (2015). Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139, 200-205.
  38. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.
  39. Koyama, T., Miyata, M., Nishimura, T., & Yazawa, K. (2012). Suppressive effects by leaves of the Dypsis lutescens palm on fat accumulation in 3T3-L1 cells and fat absorption in mice. Bioscience, biotechnology, and biochemistry, 76(1), 189-192.
  40. Krishnan, V., & Mitragotri, S. (2020). Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Advanced Drug Delivery Reviews, 153, 87-108.
  41. Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process biochemistry, 47(4), 651-658.
  42. Krishnaraj, C., Muthukumaran, P., Ramachandran, R., Balakumaran, M. D., & Kalaichelvan, P. T. (2014). Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnology Reports, 4, 42-49.
  43. Kumar, H. N. K., Preethi, S. D., Chandana, E., & Chauhan, J. B. (2012). Antioxidant activity of the fruits of Dypsis lutescens. International Journal of Research in Pharmaceutical and Biomedical Sciences, 3(2), 757-761.
  44. Lamsal, K., Kim, S. W., Jung, J. H., Kim, Y. S., Kim, K. S., & Lee, Y. S. (2011). Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology, 39(3), 194-199.
  45. Lekeshmanaswamy, M., & Anusiyadevi, K. (2020). Biosynthesis of silver nanoparticles using Pergularia daemia (Hamilton, 1822) leaf extract and its enhanced antibacterial activity against gram negative bacteria (Escherichia coli). Materials Today: Proceedings.
  46. Madkour, L. H. (2019). Introduction to nanotechnology (NT) and nanomaterials (NMs). In Nanoelectronic Materials (pp. 1-47). Springer, Cham.
  47. Magalhães-Ghiotto, G. A. V., de Oliveira, A. M., Jean, P. S., Bergamasco, R., & Gomes, R. G. (2021). Green nanoparticles in water treatment: a review of research trends, applications, environmental aspects and large-scale production. Environmental Nanotechnology, Monitoring & Management, 100526.
  48. Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия), 6(1 (20)).
  49. Mathew, S., Victorio, C. P., Sidhi, J., & BH, B. T. (2020). Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L.) WT Aiton and activity against pathogenic bacteria. Arabian Journal of Chemistry, 13(12), 9139-9144.
  50. Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101-124.
  51. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.
  52. Mortazavi-Derazkola, S., Hosseinzadeh, M., Yousefinia, A., & Naghizadeh, A. (2021). Green Synthesis and Investigation of Antibacterial Activity of Silver Nanoparticles Using Eryngium bungei Boiss Plant Extract. Journal of Polymers and the Environment, 1-8.
  53. Moteriya, P., & Chanda, S. (2020). Green synthesis of silver nanoparticles from Caesalpinia pulcherrima leaf extract and evaluation of their antimicrobial, cytotoxic and genotoxic potential (3-in-1 system). Journal of Inorganic and Organometallic Polymers and Materials, 30(10), 3920-3932.
  54. Mousavi, S. M., Hashemi, S. A., Ghasemi, Y., Atapour, A., Amani, A. M., Savar Dashtaki, A., ... & Arjmand, O. (2018). Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artificial cells, nanomedicine, and biotechnology, 46(sup3), S855-S872.
  55. Mushir, A., Jahan, N., & Ahmed, A. (2016). A review on phytochemical and biological properties of Calotropis gigantea (Linn.) R. Br. Discovery Phytomedicine, 3(3), 15.
  56. Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., ... & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied microbiology and biotechnology, 102(16), 6799-6814.
  57. Paliwal, R., Paliwal, S. R., Kenwat, R., Kurmi, B. D., & Sahu, M. K. (2020). Solid lipid nanoparticles: A review on recent perspectives and patents. Expert opinion on therapeutic patents, 30(3), 179-194.
  58. Patil, M. P., & Kim, G. D. (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied microbiology and biotechnology, 101(1), 79-92.
  59. Pirtarighat, S., Ghannadnia, M., & Baghshahi, S. (2019). Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry, 9(1), 1-9.
  60. Punjabi, K., Choudhary, P., Samant, L., Mukherjee, S., Vaidya, S., & Chowdhary, A. (2015). Biosynthesis of nanoparticles: a review. Int. J. Pharm. Sci. Rev. Res, 30(1), 219-26.
  61. Rudramurthy, G. R., & Swamy, M. K. (2018). Potential applications of engineered nanoparticles in medicine and biology: An update. JBIC Journal of Biological Inorganic Chemistry, 23(8), 1185-1204.
  62. Sadeghi, B., & Gholamhoseinpoor, F. (2015). A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 310-315.
  63. Sana, S. S., & Dogiparthi, L. K. (2018). Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Materials Letters, 226, 47-51.
  64. Santiago, T. R., Bonatto, C. C., Rossato, M., Lopes, C. A., Lopes, C. A., G Mizubuti, E. S., & Silva, L. P. (2019). Green synthesis of silver nanoparticles using tomato leaf extract and their entrapment in chitosan nanoparticles to control bacterial wilt. Journal of the Science of Food and Agriculture, 99(9), 4248-4259.
  65. Saravanan, A., Kumar, P. S., Karishma, S., Vo, D. V. N., Jeevanantham, S., Yaashikaa, P. R., & George, C. S. (2020). A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere, 128580.
  66. Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308.
  67. Sheny, D. S., Mathew, J., & Philip, D. (2011). Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(1), 254-262.
  68. Shimizu, T., Ding, W., & Kameta, N. (2020). Soft-matter nanotubes: A platform for diverse functions and applications. Chemical reviews, 120(4), 2347-2407.
  69. Shwetha, U. R., Latha, M. S., Rajith Kumar, C. R., Kiran, M. S., & Betageri, V. S. (2020). Facile synthesis of zinc oxide nanoparticles using novel Areca catechu leaves extract and their in vitro antidiabetic and anticancer studies. Journal of Inorganic and Organometallic Polymers and Materials, 30, 4876-4883.
  70. Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 16(1), 1-24.
  71. Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13(7), 2981-2988.
  72. Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K., & Upadhyay, S. N. (2016). Green synthesis of silver nanoparticles: a review, Green Sustain. Chem. 6 (2016) 34–56.
  73. Vorobyova, V., Vasyliev, G., & Skiba, M. (2020). Eco-friendly “green” synthesis of silver nanoparticles with the black currant pomace extract and its antibacterial, electrochemical, and antioxidant activity. Applied Nanoscience, 10(12), 4523-4534.
  74. Xue, M., Sampath, J., Gebhart, R. N., Haugen, H. J., Lyngstadaas, S. P., Pfaendtner, J., & Drobny, G. (2020). Studies of dynamic binding of amino acids to TiO2 nanoparticle surfaces by solution NMR and molecular dynamics simulations. Langmuir, 36(35), 10341-10350.
  75. Yaqoob, A. A., Umar, K., & Ibrahim, M. N. M. (2020). Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Applied Nanoscience, 10(5), 1369-1378.
  76. Zafar, S., & Zafar, A. (2019). Biosynthesis and characterization of silver nanoparticles using Phoenix dactylifera fruits extract and their in vitro antimicrobial and cytotoxic effects. The Open Biotechnology Journal, 13(1).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP