JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 67 No 3 (2022): Journal of the Chilean Chemical Society
Original Research Papers

MODIFIED D-GLUCOFURANOSE COMPUTATIONALLY SCREENING FOR INHIBITOR OF BREAST CANCER AND TRIPLE BREAST CANCER: CHEMICAL DESCRIPTOR, MOLECULAR DOCKING, MOLECULAR DYNAMICS AND QSAR

Ajoy Kumer
European University of Bangladesh, Gabloti, Dhaka-1212, Bangladesh
Unesco Chakma
Department of Electrical and Electronics Engineering, European University of Bangladesh, Gabtoli, Dhaka-1216, Bangladesh
Akhel Chandro
Faculty of Animal Science & Veterinary Medicine, Department of Poultry Science, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
Debashis Howlader
Department of Electrical and Electronics Engineering, European University of Bangladesh, Gabtoli, Dhaka-1216, Bangladesh
Shopnil Akash
Department of Pharmacy, Daffodil International University, Sukrabad, Dhaka-1207, Bangladesh
Md. Eleas Kobir
Department of Pharmacy, Atish Dipankar University of Science & Technology, Uttara, Dhaka-1230, Bangladesh
Tomal Hossain
Department of Electrical and Electronics Engineering, European University of Bangladesh, Gabtoli, Dhaka-1216, Bangladesh
Mohammed M. Matin
Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, 4331, Bangladesh
Published September 2, 2022
Keywords
  • Triple-negative breast cancer,,
  • Breast cancer,
  • DFT, HOMO -LUMO,
  • Molecular dynamic,,
  • Docking,,
  • and ADMET
  • ...More
    Less
How to Cite
Kumer, A., Chakma, U., Chandro, A., Howlader, D., Akash, S., Kobir, M. E., Hossain, T., & Matin, M. M. (2022). MODIFIED D-GLUCOFURANOSE COMPUTATIONALLY SCREENING FOR INHIBITOR OF BREAST CANCER AND TRIPLE BREAST CANCER: CHEMICAL DESCRIPTOR, MOLECULAR DOCKING, MOLECULAR DYNAMICS AND QSAR. Journal of the Chilean Chemical Society, 67(3), 5623-5635. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/2018

Abstract

Drug discovery and the process of new drug design have been formulated much easier in the past two decades by introducing and proliferation of combined physical and biochemical process from computing capabilities and computational approaches. Since the breast cancer is one of the life-threatening problems globally, and no effective prescription is still now invented or not available in the market or medical treatment. Although few is just touched on the market, but the remedy has consisted of severe side effects and low efficiency. Regarding that fact, the D-Glucofuranose and its derivative have been designed by the quantum calculation, molecular docking, ADMET and SAR analysis. For molecular docking, the cancer protease (3hb5) and triple-negative breast cancer protease (4pv5) are selected whereas the binding affinity is at ranging from -6.20 to -10.40 kcal/mol, and it is slightly lower than cancer protease (3hb5) for triple-negative breast cancer protease (4pv5). Our comprehensive study has shown that 03, 05, and 08 could be considered the potential drug comparison with standard. These three drugs completed all the criteria, including high binding energy, non-toxic, non-carcinogenic, and highly soluble in biological system.

 

2018.JPG

References

  1. Lehmann, J., DeLisa, J., Warren, C., Bryant, P., and Nicholson, C. (1978) Cancer rehabilitation: assessment of need, development, and evaluation of a model of care, Archives of physical medicine and rehabilitation 59, 410-419.
  2. Wang, H., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., Casey, D. C., Charlson, F. J., Chen, A. Z., and Coates, M. M. (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015, The lancet 388, 1459-1544.
  3. Nagai, H., and Kim, Y. H. (2017) Cancer prevention from the perspective of global cancer burden patterns, Journal of thoracic disease 9, 448.
  4. Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., and Sharma, K. (2010) Various types and management of breast cancer: an overview, Journal of advanced pharmaceutical technology & research 1, 109.
  5. Parsa, N. (2012) Environmental factors inducing human cancers, Iranian journal of public health 41, 1.
  6. Diet and Physical Activity: What’s the Cancer Connection? (https://www.cancer.org/cancer/cancer-causes/diet-physical-activity/diet-and-physical-activity.html), American cancer society.
  7. Fromer, M. (2007) New SEER report documents high risk of second cancers in cancer survivors, Oncology Times 29, 8.
  8. Ershler, W. B. (2005) The influence of advanced age on cancer occurrence and growth, Biological Basis of Geriatric Oncology, 75-87.
  9. Stage, I., and Stage, I. Breast cancer happens when cells in your breast grow and divide in an uncontrolled way, creating a mass of tissue called a tumor. The risk of developing breast cancer increases you age and with weight gain. Signs of breast cancer can include feeling a lump in a breast, experiencing a change in the size of your breast and seeing changes to the skin on your breasts. Early detection is aided by mammograms.
  10. Khuwaja, G. A., and Abu-Rezq, A. (2004) Bimodal breast cancer classification system, Pattern analysis and applications 7, 235-242.
  11. Buja, A., Pierbon, M., Lago, L., Grotto, G., and Baldo, V. (2020) Breast cancer primary prevention and diet: An umbrella review, International journal of environmental research and public health 17, 4731.
  12. Martin, A.-M., and Weber, B. L. (2000) Genetic and hormonal risk factors in breast cancer, Journal of the National Cancer Institute 92, 1126-1135.
  13. Tyrer, J., Duffy, S. W., and Cuzick, J. (2004) A breast cancer prediction model incorporating familial and personal risk factors, Statistics in medicine 23, 1111-1130.
  14. Thomas, D. B. (1984) Do hormones cause breast cancer?, Cancer 53, 595-604.
  15. Singh, P., Kapil, U., Shukla, N., Deo, S., and Dwivedi, S. (2011) Association of overweight and obesity with breast cancer in India, Indian journal of community medicine: official publication of Indian Association of Preventive & Social Medicine 36, 259.
  16. Arce-Salinas, C., Aguilar-Ponce, J., Villarreal-Garza, C., Lara-Medina, F., Olvera-Caraza, D., Miranda, A. A., Flores-Diaz, D., and Mohar, A. (2014) Overweight and obesity as poor prognostic factors in locally advanced breast cancer patients, Breast cancer research and treatment 146, 183-188.
  17. Lynch, B. M., Neilson, H. K., and Friedenreich, C. M. (2010) Physical activity and breast cancer prevention, Physical activity and cancer, 13-42.
  18. Monninkhof, E. M., Elias, S. G., Vlems, F. A., van der Tweel, I., Schuit, A. J., Voskuil, D. W., and van Leeuwen, F. E. (2007) Physical activity and breast cancer: a systematic review, Epidemiology, 137-157.
  19. (2018.) Breast cancer statistics (https://www.wcrf.org/dietandcancer/breast-cancer-statistics/).
  20. Mazumdar, M., Fournier, D., Zhu, D.-W., Cadot, C., Poirier, D., and Lin, S.-X. (2009) Binary and ternary crystal structure analyses of a novel inhibitor with 17β-HSD type 1: a lead compound for breast cancer therapy, Biochemical Journal 424, 357-366.
  21. Zhang, H., Huang, Q., Zhai, J., Zhao, Y.-n., Zhang, L.-p., Chen, Y.-y., Zhang, R.-w., Li, Q., and Hu, X.-p. (2015) Structural basis for 18-β-glycyrrhetinic acid as a novel non-GSH analog glyoxalase I inhibitor, Acta Pharmacologica Sinica 36, 1145-1150.
  22. Myers, S. B., Ann. (2001) Drug discovery—an operating model for a new era, Nature biotechnology 19, 727-730.
  23. DiMasi, J. A. H., Ronald W; Grabowski, Henry G. (2003) The price of innovation: new estimates of drug development costs, Journal of health economics 22, 151-185.
  24. Nicolaou, K. (2014) Advancing the drug discovery and development process, Angewandte Chemie 126, 9280-9292.
  25. Zhao, H., Zong, G., Zhang, J., Wang, D., and Liang, X. (2011) Synthesis and anti-fungal activity of seven oleanolic acid glycosides, Molecules 16, 1113-1128.
  26. Matin, M. M. B., MMH; Debnath, Dulal C; Manchur, MA. (2013) Synthesis and comparative antimicrobial studies of some acylated D-glucofuranose and D-glucopyranose derivatives, Int. J. Biosci 3, 279-287.
  27. Nizamov, I. S. N., Yevgeniy N; Nizamov, Ilnar D; Belov, Timur G; Voloshina, Alexandra D; Batyeva, Elvira S; Cherkasov, Rafael A. (2016) α‐d‐Glucofuranose and α‐d‐allofuranose diacetonides and silyl ether of α‐d‐glucofuranose diacetonide in dithiophosphorylation reactions, Heteroatom Chemistry 27, 345-352.
  28. Benedeković, G. P., Mirjana; Radulović, Niko S; Stojanović-Radić, Zorica; Farkas, Sándor; Francuz, Jovana; Popsavin, Velimir. (2021) Synthesis and antimicrobial activity of (−)-cleistenolide and analogues, Bioorganic Chemistry 106, 104491.
  29. Matin, M. M. B., Md Mosharef Hossain; Azad, Abul Kalam Mohammad Shamsuddin; Rashid, Md Harun Or. (2015) Synthesis of 6-O-Stearoyl-1, 2-O-isopropylidene-[alpha]-D-glucofuranose derivatives for antimicrobial evaluation, Journal of Physical Science 26, 1.
  30. Ouchi, T., Jokei, S., Fujie, H., Chikashita, H., and Inoi, T. (1984) Synthesis of 1, 2: 5, 6‐Di‐O‐isopropylidene‐3‐O‐[3‐(5‐fluorouracil‐1‐yl)‐propionoyi]‐α‐D‐glucofuranose and its antitumor activity, Journal of heterocyclic chemistry 21, 1023-1024.
  31. Kawsar, S. M. A. I., Md Moinul; Chowdhury, Shagir Ahammad; Hasan, Tanvirul; Hossain, Mohammed Kamrul; Manchur, Mohammad Abul, and Ozeki, Y. (2013) Design and newly synthesis of some 1, 2-O-isopropylidene-α-D-glucofuranose derivatives: Characterization and antibacterial screening studies, Hacettepe Journal of Biology and Chemistry 41, 195-206.
  32. REIST, E. J., SPENCER, R. R., WAIN, M. E., JUNGA, I. G., GOODMAN, L., and Baker, B. (1961) Potential Anticancer Agents. 1 LVII. Synthesis of Alkylating Agents Derived from 6-Amino-6-deoxy-D-glucose and 5-Amino-5-deoxy-D-ribose, The Journal of Organic Chemistry 26, 2821-2827.
  33. Ramos, J. (2020) Introducción a Materials Studio en la Investigación Química y Ciencias de los Materiales.
  34. Delley, B. (1995) DMol, a standard tool for density functional calculations: review and advances, In Theoretical and computational chemistry, pp 221-254; https://doi.org/210.1016/S1380-7323(1005)80037-80038, Elsevier.
  35. Delley, B. (2010) Time dependent density functional theory with DMol3, Journal of Physics: Condensed Matter 22, 384208.
  36. Kadir, F. A., Kassim, N. M., Abdulla, M. A., and Yehye, W. A. (2013) PASS-predicted Vitex negundo activity: antioxidant and antiproliferative properties on human hepatoma cells-an in vitro study, BMC complementary and alternative medicine 13, 1-13.
  37. DeLano, W. L. (2002) The PyMOL user's manual, http://www.pymol.org.
  38. Dallakyan, S., and Olson, A. J. (2015) Small-molecule library screening by docking with PyRx, In Chemical biology, pp 243-250, Springer.
  39. Inc, A. S. (2017) Discovery Studio Modeling Environment, Release 4.0, Accelrys Software Inc San Diego.
  40. James C. Phillips, D. J. H., Julio D. C. Maia, John E. Stone, Joao V. Ribeiro, Rafael C. Bernardi, Ronak Buch, Giacomo Fiorin, Jerome Henin, Wei Jiang, Ryan McGreevy, Marcelo C. R. Melo, Brian K. Radak, Robert D. Skeel, Abhishek Singharoy, Yi Wang, Benoit Roux, Aleksei Aksimentiev, Zaida Luthey-Schulten, Laxmikant V. Kale, Klaus Schulten, Christophe Chipot, and Emad Tajkhorshid. (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD, Journal of Chemical Physics, 153, 044130; https://doi.org/044110.041063/044135.0014475.
  41. Skjevik, Å. A., Madej, B. D., Dickson, C. J., Teigen, K., Walker, R. C., and Gould, I. R. (2015) All-atom lipid bilayer self-assembly with the AMBER and CHARMM lipid force fields, Chemical Communications 51, 4402-4405.
  42. Lipinski, C. A. J. D. d. t. T. (2004) Lead-and drug-like compounds: the rule-of-five revolution, 1, 337-341.
  43. Walters, W. P., Murcko, A. A., and Murcko, M. A. J. C. o. i. c. b. (1999) Recognizing molecules with drug-like properties, 3, 384-387.
  44. Walters, W. P., and Murcko, M. A. J. A. d. d. r. (2002) Prediction of ‘drug-likeness’, 54, 255-271.
  45. Daina, A., Michielin, O., and Zoete, V. J. S. r. (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, 7, 1-13.
  46. Daina, A., Michielin, O., and Zoete, V. (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Scientific reports 7, 1-13.
  47. Cheng, F. L., Weihua; Zhou, Yadi; Shen, Jie; Wu, Zengrui; Liu, Guixia; Lee, Philip W; Tang, Yun;. (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties, J Chem Inf Model 52, 3099-3105. doi: 3010.1021/ci300367a.
  48. Hongbin Yang, C. L., Lixia Sun, Jie Li, Yingchun Cai, Zhuang Wang, Weihua Li, Guixia Liu, Yun Tang;. (2018) admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties, Bioinformatics 35, 1067–1069, https://doi.org/1010.1093/bioinformatics/bty1707.
  49. Yang, H. L., Chaofeng; Sun, Lixia; Li, Jie; Cai, Yingchun; Wang, Zhuang; Li, Weihua; Liu, Guixia; Tang, Yun;. (2019) admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties, Bioinformatics 35, 1067-1069.
  50. Dewar, M. J., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. J. J. o. t. A. C. S. (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model, 107, 3902-3909.
  51. De Oliveira, D. B. G., Anderson Coser. (2000) BuildQSAR: a new computer program for QSAR analysis, Quantitative Structure‐Activity Relationships: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 19, 599-601.
  52. Wang, S., Dong, G., and Sheng, C. (2019) Structural simplification: an efficient strategy in lead optimization, Acta Pharmaceutica Sinica B 9, 880-901.
  53. Ahmed, T. (2015) Design and Development of Drugs Targeting Molecular Structures of Genes and Proteins, East West University.
  54. Lu, L. (2015) Can B3LYP be improved by optimization of the proportions of exchange and correlation functionals?, International Journal of Quantum Chemistry 115, 502-509.
  55. Aihara, J.-i. (1999) Reduced HOMO− LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons, The Journal of Physical Chemistry A 103, 7487-7495.
  56. Afroza, Z. K., Ajoy; Sarker, Md. Nuruzzaman; Paul, Sunanda. (2019) The substituent group activity in the anion of cholinium carboxylate ionic liquids on thermo-physical, chemical reactivity, and biological properties: A DFT study, International Journal of Chemistry and Technology 3, 151-161; 110.32571/ ijct.648409.
  57. Ajoy, K., ; Sunanda, Paul; Md., Nuruzzaman, Sarker; Mohammad, Jahidul, Islam;. (2019) The prediction of thermo physical, vibrational spectroscopy, chemical reactivity, biological properties of morpholinium borate, phosphate, chloride and bromide Ionic Liquid: A DFT Study, International Journal of New Chemistry 6, 236-253.https://dx.doi.org/210.22034/ijnc.22019.110412.111053.
  58. Ajoy, K., ; Islam, Mohammad Jahidul; Paul, Sunanda;. (2020) Effect of External Electric Field and Temperature on Entropy, Heat of Capacity, and Chemical Reactivity with QSAR Study of Morphonium Chloride and Nitrous Ionic Liquids Crystal Using DFT, Chemical Methodologies 4, 595-604.
  59. Kumer, A., ; Sarker, Md., Nuruzzaman; Paul, Sunanda; Zannat, Afroza;. (2019) The Theoretical Prediction of Thermophysical properties, HOMO, LUMO, QSAR and Biological Indics of Cannabinoids (CBD) and Tetrahhdrocannabinol (THC) by Computational Chemistry, Advanced Journal of Chemistry-Section A 2, 190-202; doi-110.33945/SAMI/AJCA.32019.33942.190202.
  60. Kumer, A., ; Sarker,Md Nuruzzaman; Paul, Sunanda;. (2019) The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming, International Journal of Chemistry and Technology 3, 26-37.
  61. Kumer, A., ; Sarker, Md Nuruzzaman; Paul, Sunanda;. (2019) The thermo physical, HOMO, LUMO, Vibrational spectroscopy and QSAR study of morphonium formate and acetate Ionic Liquid Salts using computational method, Turkish Computational and Theoretical Chemistry 3, 59-68; https://dergipark.org.tr/tr/download/article-file/723558.
  62. Kumer, A., ; Sarkar, Md., Nuruzzaman; Pual, Sunanda;. (2019) The Simulating Study of HOMO, LUMO, thermo physical and Quantitative Structure of Activity Relationship (QSAR) of Some Anticancer Active Ionic Liquids, Eurasian Journal of Environmental Research 3, 1-10; https://dergipark.org.tr/en/pub/ejere/issue/45416/478362.
  63. Sunanda Paul; Ajoy Kumer; Md Nuruzzaman, S., ; Islam, Mohammad Jahidul;. (2020) The effect of halogen atoms at propanoate anion on thermo physical, vibrational spectroscopy, chemical reactivity, biological properties of morpholinium propionate Ionic Liquid, International journal of Advanced Biological and Biomedical Research 8, 112-127.
  64. Islam, M., Jahidul; Kumer, Ajoy; Sarker,Md., Nuruzzaman; Paul, Sunanda; Zannat, Afroza. (2019) The prediction and theoretical study for chemical reactivity, thermophysical and biological activity of morpholinium nitrate and nitrite ionic liquid crystals: A DFT study, Advanced Journal of Chemistry-Section A 2, 316-326.http://dx.doi.org/310.33945/SAMI/AJCA.32019.33944.33945.
  65. Islam, M. J., ; Sarker, Md. Nuruzzaman; Kumer, Ajoy; Paul, Sunanda;. (2019) The Evaluation and Comparison of Thermo-Physical, Chemical and Biological Properties of Palladium(II) Complexes on Binuclear Amine Ligands with Different Anions by DFT Study, International journal of Advanced Biological and Biomedical Research 7, 318-337.https://dx.doi.org/310.33945/SAMI/IJABBR.32019.33944.33943.
  66. Islam, M. J., ; Kumer, Ajoy; Paul, Sunanda; Sarker, Md Nuruzaman;. (2020) The Activity of Alkyl Groups in Morpholinium Cation on Chemical Reactivity, and Biological Properties of Morpholinium Tetrafluroborate Ionic Liquid Using the DFT Method, Chemical Methodologies 4, 130-142.http://dx.doi.org/110.33945/SAMI/CHEMM.32020.33942.33943.
  67. Kumer, A. I., Mohammad Jahidul; Paul, Sunanda;. (2020) Effect of External Electric Field and Temperature on Entropy, Heat of Capacity, and Chemical Reactivity with QSAR Study of Morphonium Chloride and Nitrous Ionic Liquids Crystal Using DFT, Chemical Methodologies 4, 595-604.
  68. Md, N. S. A., Kumer; Mohammad, Jahidul Islam; Sunanda, Paul;. (2019) A computational study of thermophysical, HOMO, LUMO, vibrational spectrum and UV-visible spectrum of cannabicyclol (CBL), and cannabigerol (CBG) using DFT, Asian Journal of Nanoscience and Materials 2, 439-447.
  69. Mohammad, J., Islam; Sunanda, Paul; Ajoy, Kumer; Md., Nuruzzaman, Sarker. (2020) Computational approach of palladium (II) complex ions with binuclear diamine ligands thermo-physical, chemical, and biological properties: a dft study, Asian Journal of Nanosciences and Materials 3, 67 -81.
  70. Mohammad, J., Islam, Md, N., Sarker, Ajoy, K., and Sunanda, P. (2019) The Comparison of Primary, Secondary and Tertiary Amine Ligands on Palladium (II) Complex Ion on Thermo-Physical, Chemical Reactivity, and Biological Properties: A DFT Study, Cumhuriyet Science Journal 40, 679-694.
  71. Cosconati, S. F., Stefano; Perryman, Alex L; Harris, Rodney; Goodsell, David S; Olson, Arthur J. (2010) Virtual screening with AutoDock: theory and practice, Expert opinion on drug discovery 5, 597-607.
  72. Ajoy Kumer; Md Wahab Khan. (2021) Synthesis, characterization, antimicrobial activity and computational exploirations of ortho toludinium carboxylate ionic liquids, Journal of Molecular Structure 1245, 131087; https://doi.org/131010.131016/j.molstruc.132021.131087.
  73. Hoque, M. M. H., Md Sajib; Kumer, Ajoy;Khan, Md Wahab;. (2020) Synthesis of 5, 6-diaroylisoindoline-1, 3-dione and computational approaches for investigation on structural and mechanistic insights by DFT, Molecular Simulation 36, 1298-1307; https://doi.org/1210.1080/08927022.08922020.01811866.
  74. Kumer, A., and Khan, M. W. (2021) The effect of alkyl chain and electronegative atoms in anion on biological activity of anilinium carboxylate bioactive ionic liquids and computational approaches by DFT functional and molecular docking, Heliyon, e07509.
  75. Nahar, L. A., Kumer, A., and Khan, M. W. (2021) Investigation of catalytic effect on carbon-carbon bond formation by Baylis-Hillman (BH) reaction between (2/3/4)-nitro-arylaldehyde and alkylacrylates and computational approaches through DFT functional, Heliyon, e08139.
  76. Nath, A., ; Kumer , Ajoy, ; Md, Wahab Khan;. (2020) Synthesis, computational and molecular docking study of some 2, 3-dihydrobenzofuran and its derivatives, Journal of Molecular Structure 1224, 129-225. https://doi.org/110.1016/j.molstruc.2020.129225.
  77. Nath, A., Kumer, A., Zaben, F., and Khan, M. W. (2021) Investigating the binding affinity, molecular dynamics, and ADMET properties of 2, 3-dihydrobenzofuran derivatives as an inhibitor of fungi, bacteria, and virus protein, Beni-Suef University Journal of Basic and Applied Sciences 10, 1-13.
  78. Hoque, M. M., ; Ajoy, Kumer; Hussen, Md. Sajib; Khan, Md Wahab;. (2021) Theoretical Evaluation of 5, 6-Diaroylisoindoline-1,3-dione as Potential Carcinogenic Kinase PAK1 Inhibitor: DFT Calculation, Molecular Docking Study and ADMET Prediction, International journal of Advanced Biological and Biomedical Research 9, 77-104; 110.22034/IJABBR.22021.45696.
  79. Salentin, S., Haupt, V. J., Daminelli, S., and Schroeder, M. (2014) Polypharmacology rescored: Protein–ligand interaction profiles for remote binding site similarity assessment, Progress in biophysics and molecular biology 116, 174-186.
  80. Hollingsworth, S. A., and Dror, R. O. (2018) Molecular dynamics simulation for all, Neuron 99, 1129-1143.
  81. Strovel, J., Sittampalam, S., Coussens, N. P., Hughes, M., Inglese, J., Kurtz, A., Andalibi, A., Patton, L., Austin, C., and Baltezor, M. (2016) Early drug discovery and development guidelines: for academic researchers, collaborators, and start-up companies, Assay Guidance Manual [Internet].
  82. Pellegatti, M. J. E. o. o. d. m., and toxicology. (2012) Preclinical in vivo ADME studies in drug development: a critical review, 8, 161-172.
  83. Li, A. P. J. D. d. t. (2001) Screening for human ADME/Tox drug properties in drug discovery, 6, 357-366.
  84. Yang, Y., Zhao, Y., Yu, A., Sun, D., and Yu, L. (2017) Oral drug absorption: Evaluation and prediction, In Developing solid oral dosage forms, pp 331-354, Elsevier.
  85. Onetto, A. J., and Sharif, S. J. S. (2021) Drug Distribution.
  86. Zhang, Z., and Tang, W. J. A. P. S. B. (2018) Drug metabolism in drug discovery and development, 8, 721-732.
  87. Currie, G. M. J. J. o. n. m. t. (2018) Pharmacology, part 2: introduction to pharmacokinetics, 46, 221-230.
  88. Guengerich, F. P. J. D. m., and pharmacokinetics. (2010) Mechanisms of drug toxicity and relevance to pharmaceutical development, 1010210090-1010210090.
  89. Verma, J., Khedkar, V. M., and Coutinho, E. C. (2010) 3D-QSAR in drug design-a review, Current topics in medicinal chemistry 10, 95-115.
  90. Scrocco, E., and Tomasi, J. (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties, In New concepts II, pp 95-170, Springer.
  91. Politzer, P., and Truhlar, D. G. (2013) Chemical applications of atomic and molecular electrostatic potentials: reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems, Springer Science & Business Media.
  92. Müller, J. J., Lapko, A., Ruckpaul, K., and Heinemann, U. (2002) Modeling of electrostatic recognition processes in the mammalian mitochondrial steroid hydroxylase system, Biophysical chemistry 100, 281-292.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP