AN ELECTROCHEMICAL STUDY OF THE COBALT ELECTRODEPOSITION ONTO A CARBON FIBER ULTRAMICROELECTRODE
- cobalt,
- electrodeposition,
- ultramicroelectrode,
- carbon fiber
Copyright (c) 2022 SChQ
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
A kinetic study of the cobalt electrodeposition onto carbon fiber ultramicroelectrodes of 11 µm of diameter from an aqueous solution containing CoCl2 0.01 M + NH4Cl 0.1 M was conducted at overpotential conditions. From the voltamperometric studies, it was found that the value of the diffusion coefficient is 1.2x10-5 cm2 s-1. The analysis of the current density transients indicates the existence of a 3D nucleation and growth process. Also, it was observed that the values of the number of active nucleation sites increases as the value of the applied potential decreases.
References
- G. Herzer, Magn. Hysteresis Nov. Magn. Mater. (1997), 38, 711–730.
- https://doi:10.1007/978-94-011-5478-9_77.
- J. L. Su, M. Chen, J. Lo, R. E. Lee, J. Appl. Phys. (1998), 63(8), 4020.
- https://doi.org/10.1063/1.340536
- H. Y Ho, W. Chen, W., T. Y. Fu, S. J. Chen, IEEE Trans. Magn. (2014), 50, 1-4.
- https://doi.org/10.1109/TMAG.2013.2277758
- M. Ando, T. Kobayashi, S. Iijima, M. Haruta, J. Mater. Chem. (1997), 7, 1779–1783.
- https://doi.org/10.1039/A700125H
- H. Yamaura, J. Tamaki, K. Moriya, N. Miura, N. Yamazoe, J. Electrochem. Soc. (1997), 144, L158-L160. https://doi.org/10.1149/1.1837710
- P. Nkeng, J. F. Koenig, J. L. Gautier, P. Chartier, G. Poillerat, J. Electroanal. Chem. (1996), 402, 81–89. https://doi.org/10.1016/0022-0728(95)04254-7
- Y. Okamoto, T. Imanaka, S. Teranishi, J. Catal. (1980), 65, 448–460. https://doi.org/10.1016/0021-9517(80)90322-X
- K. Ramachandran, C. O. Oriakhi, M. M. Lerner, V. R. Koch, Mater. Res. Bull. (1996), 31, 767–772. https://doi.org/10.1016/0025-5408%2896%2900070-0
- M. G. Hutchins, P. J. Wright, P. D. Grebenik, Sol. Energy Mater. (1987), 16, 113–131.
- https://doi.org/10.1016/0165-1633(87)90013-X
- X. Liu, R. Yi, Y. Wang, G. Qiu, N. Zhang, X. Li, J. Phys. Chem. C (2006), 111, 163–167.
- https://doi.org/10.1021/jp0643597
- M. Palomar, I. González, A. Soto, E. Arce, J. Electroanal. Chem. (1998), 443, 125–136.
- https://doi.org/10.1016/S0022-0728(97)00496-8
- N. Ramos, L. H. Mendoza, C. H. Rios, C. Galán, Adv. Mat. Res. (2014), 976, 144-147.
- https://doi.org/10.4028/www.scientific.net/AMR.976.144
- M. Palomar, J. Aldana, L. Botello, E. Arce, M. Ramírez, J. Mostany, M. Romero Electrochim. Acta (2017), 241, 162–169.
- https://doi.org/10.1016/j.electacta.2017.04.126
- A. Frank, P. Sumodjo, Electrochim. Acta (2014), 132, 75–82.
- https://doi.org/10.1016/j.electacta.2014.03.130
- S. Floate, M. Hyde, R. G. Compton, J. Electroanal. Chem. (2002), 523, 49–63.
- https://doi.org/10.1016/S0022-0728(02)00709-X
- Y. Song, Z. He, H. Zhu, H. Hou, L. Wang, Electrochim. Acta, (2011), 58, 757–763.
- https://doi.org/10.1016/j.electacta.2011.10.033
- C. H. Ríos, L. H. Mendoza, M. Rivera, J. Solid State Electrochem. (2010), 14, 659-668.
- https://doi.org/10.1007/s10008-009-0816-3
- E. Gómez, E. Valles, J. Appl. Electrochem. (2002), 32(6), 693–700.
- https://doi.org/10.1023/A:1020194532136
- F. Pagnanelli, P. Altimari, M. Bellagamba, G. Granata, E. Moscardini, P. G. Schiavi, L. Toro, Electrochim. Acta (2015), 155, 228–235.
- https://doi.org/10.1016/j.electacta.2014.12.112
- H. Harti, J. L. Bubendorff, A. Florentin, C. Pirri, J. Ebothe, J. Cryst. Growth, (2011), 319, 79–87.
- https://doi.org/10.1016/j.jcrysgro.2011.01.028
- S. Banbur-Pawlowska, K. Mech, R. Kowalik, P. Zabinski, Appl. Surf. Sci. (2016), 388, 805–808.
- https://doi.org/10.1016/j.apsusc.2016.04.005
- M. Ibrahim, R. Al Radadi, Mater. Chem. Phys. (2015), 151, 222–232.
- https://doi.org/10.1016/j.matchemphys.2014.11.058
- V. Graciano, U. Bertocci, G. Stafford, J. Electrochem. Soc. (2019), 166, D3246-D3253.
- https://doi.org/10.1149/2.0311901jes
- L. Cagnon, A. Gundel, T. Devolder, A. Morrone, C. Chappert, J. E. Schmidt, P. Allongue, Appl. Surf. Scien., (2000), 164, 22–28.
- D. Lützenkirchen-Hecht, D. Hamulić, R. Wagner, I. Milošev, Radiat. Phys. Chem. (2020), 175, 108113.
- https://doi.org/10.1016/j.radphyschem.2018.12.033
- L. H. Mendoza, J. Robles, M. E. Palomar, J. Electroanal. Chem. (2002), 521, 95-106.
- https://doi.org/10.1016/S0022-0728(02)00659-9
- L. H. Mendoza, J. Robles, M. E. Palomar, J. Electroanal. Chem. (2003), 545, 39-45.
- https://doi.org/10.1016/S0022-0728(03)00087-1
- M. Ohba, T. Scarazzato, D. Espinosa, J. Tenorio, Z. Panossian, Miner. Met. Mater. Ser. (2019), 967–976.
- https://doi:10.1007/978-3-030-05861-6_95.
- S. Rehim, S. Wahaab, M. Ibrahim, M. Dankeria, J. Chem. Technol. Biotechnol, (1998), 73, 369–376.
- https://doi.org/10.1002/(SICI)1097-4660(199812)73:4<369::AID-JCTB971>3.0.CO;2-P
- B. Tzaneva, A. Naydenov, S. Todorova, V. Videkov, V. Milusheva, P. Stefanov, Electrochim. Acta, (2016), 191, 192–199.
- https://doi.org/10.1016/j.electacta.2016.01.063
- P. Schiavi, P. Altimari, R. Zanoni, F. Pagnanelli, Electrochim. Acta. (2016), 220, 405–416.
- https://doi.org/10.1016/j.electacta.2016.10.117
- P. Schiavi, P. Altimari, F. Pagnanelli, E. Moscardini, L. Toro, Chem. Eng. Trans. (2015), 43, 673–678.
- https://doi.org/10.3303/CET1543113
- E. Herrero, J. Li, H. D. Abruña, Electrochim. Acta, (1999), 44, 2385–2396.
- https://doi.org/10.1016/S0013-4686(98)00362-4
- F. Bento, L. Mascaro, J. Braz. Chem. Soc. (2002), 13, 502–509.
- https://doi.org/10.1590/S0103-50532002000400015
- C. H. Ríos, L. H. Mendoza, M. Rivera, J. Solid State Electrochem. (2009), 14(4), 659–668.
- https://doi.org/10.1007/s10008-009-0816-3
- N. Myung, K. H. Ryu, P. T. Sumodjo, K. Nobe, Electrochem. Soc. Proceed. (1998), 270–281.
- S. El Rehim, M. A. Ibrahim, M. M. Dankeria, J. Appl. Electrochem. (2002), 32(9), 1019–1027.
- https://doi.org/10.1023/A:1020945031502
- M. Peña, R. Celdran, R. Duo J. Electroanal. Chem. (1994), 367, 85–92.
- https://doi.org/10.1016/0022-0728(93)03028-N
- B. Zheng, L. Wong, L. Wu, Z. Chen, Int. J. Electrochem., (2016), 2016, 1-11.
- https://doi.org/10.1155/2016/4318178
- A. Dimitrov, S. Hadzi, K. Popov, M. Pavlovic, V. Radmilovic, J. Appl. Electrochem. (1998), 28(8), 791-796.
- https://doi.org/10.1023/A:1003462924591
- T. Berzins, P. Delahay, J. Am. Chem. Soc., (1953), 75(3), 555-559.
- https://doi.org/10.1021/ja01099a013
- A. J. Bard, L. Faulkner, Introduction and overview of electrode processes. Electrochemical Methods Fundamentals and Applications, John Wiley & Sons, (2001), 850.
- B. R. Scharifker, G. Hills, Electrochim. Acta, (1983), 28(7), 879-889.
- https://doi.org/10.1016/0013-4686(83)85163-9
- B. R. Scharifker, J. Mostany, J. Electroanal. Chem. Inter. Electrochem., (1984), 177(1–2). 13-23.
- https://doi.org/10.1016/0022-0728(84)80207-7
- A. N. Correia, S. A. Machado, J. C. Sampaio, L. A. Avaca, J. Electroanal. Chem. (1996), 407, 37–43.
- https://doi.org/10.1016/0022-0728(95)04458-2
- S. M. Silva, C. R. Alves, A. N. Correia, R. M. Martins, A. L. R. Nobre, S. A. Machado, L. H. Mazo, L. A. Avaca. Quim. Nova, (2005), 21, 78–85.