JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 68 No 2 (2023): Journal of the Chilean Chemical Society
Original Research Papers

DEVELOPMENT AND OPTIMIZATION OF TERIFLUNOMIDE-LOADED CHONDROITIN SULPHATE-COATED NANOSTRUCTURED LIPID CARRIERS (NLCs) THROUGH BOX BEHNKEN DESIGN

Cristobal Campos
Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile.
Pablo Torres-Vergara
Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile.
Ricardo Godoy
Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile.
Cristina Riquelme
Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile.
Noemí Arellano
Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California-Campus Tijuana, México.
Rocío Chávez-santoscoy
Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, México.
Isabel Herbas-Goitía
Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile.
Carolina Gómez-Gaete
Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción
Published August 22, 2023
Keywords
  • Teriflunomide,
  • rheumatoid arthritis,
  • nanostructured lipid,
  • experimental design
How to Cite
Campos, C., Torres-Vergara, P., Godoy, R., Riquelme, C., Arellano, N., Chavez-Santoscoy, R., Herbas-Goitía, I., & Gómez-Gaete, C. (2023). DEVELOPMENT AND OPTIMIZATION OF TERIFLUNOMIDE-LOADED CHONDROITIN SULPHATE-COATED NANOSTRUCTURED LIPID CARRIERS (NLCs) THROUGH BOX BEHNKEN DESIGN. Journal of the Chilean Chemical Society, 68(2), 5832-5838. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/2360

Abstract

Rheumatoid arthritis (RA) is an autoimmune chronic disease characterized by disabling pain and deformity of the joints. Teriflunomide (TFM), a metabolite from leflunomide, is given orally to RA patients, but its gastrointestinal and systemic side effects are severe and not well tolerated. This study aims to optimize and develop nanostructured lipid carriers (NLC) loaded with teriflunomide (NLC-TFM).  NLCs were developed by homogenization and ultrasound. The optimization parameters were achieved through a Box-Behnken experimental design. The optimized NLC-TFM were also coated with chondroitin sulfate (NLC-TFM-CHS) to enhance its interaction with target tissues and shift its focus to intra-articular administration. Both formulations were characterized in their morphology, particle size (PS), Zeta potential, entrapment efficiency (EE%), drug loading (DL%), molecular interactions and in vitro release kinetics.  The developed NLC-TFM and NLC-TFM-CHS exhibited a spherical morphology, Zeta potential lower than -30 mV, mean PS of 178.6-211 nm, EE% of 85.95-65.78 % and DL% of 3.97-2.97%, respectively. Thermal and crystalline behavior analyses suggested that TFM is dissolved within the lipidic matrix. The release of TFM showed a biphasic pattern, with an initial burst release followed by a sustained release, being the latter more marked in NLC-TFM-CHS. The developed formulations show promise as delivery systems for targeted therapy of RA through intra-articular administration.

2360.JPG

References

(1) Aletaha, D.; Smolen, J. S. JAMA - Journal of the American Medical Association 2018, 320, 1360–1372. doi:10.1001/jama.2018.13103
(2) Conforti, A.; Di Cola, I.; Pavlych, V.; Ruscitti, P.; Berardicurti, O.; Ursini, F.; Giacomelli, R.; Cipriani, P. Autoimmun Rev 2021, 20, 102735. doi:10.1016/j.autrev.2020.102735
(3) Scherer, H. U.; Häupl, T.; Burmester, G. R. The Etiology of Rheumatoid Arthritis. Journal of Autoimmunity. Academic Press June 1, 2020, p 102400. doi:10.1016/j.jaut.2019.102400
(4) Bar-Or, A.; Pachner, A.; Menguy-Vacheron, F.; Kaplan, J.; Wiendl, H. Drugs 2014, 74, 659. doi:10.1007/S40265-014-0212-X
(5) Muehler, A.; Kohlhof, H.; Groeppel, M.; Vitt, D. Drugs in R and D 2019, 19, 351–366. doi:10.1007/s40268-019-00286-z
(6) Fragoso, Y. D.; Brooks, J. B. B. Expert Rev Clin Pharmacol 2015, 8, 315–320. doi:10.1586/17512433.2015.1019343
(7) Sharma, M.; Chaudhary, D. Int J Pharm 2021, 594, 120176. doi:10.1016/j.ijpharm.2020.120176
(8) Shinde, C. G.; Pramod Kumar, T. M.; Venkatesh, M. P.; Rajesh, K. S.; Srivastava, A.; Osmani, R. A. M.; Sonawane, Y. H. RSC Adv 2016, 6, 12913–12923. doi:10.1039/c5ra22672d
(9) Garg, N. K.; Tandel, N.; Bhadada, S. K.; Tyagi, R. K. Front Pharmacol 2021, 12, 2194. doi:10.3389/FPHAR.2021.713616/BIBTEX
(10) Ye, J.; Wang, Q.; Zhou, X.; Zhang, N. Int J Pharm 2008, 352, 273–279. doi:10.1016/j.ijpharm.2007.10.014
(11) Syed, A.; Devi, V. K. J Drug Deliv Sci Technol 2019, 53, 101217. doi:10.1016/j.jddst.2019.101217
(12) Bishnoi, M.; Jain, A.; Hurkat, P.; Jain, S. K. J Drug Target 2014, 22, 805–812. doi:10.3109/1061186X.2014.928714
(13) Rabelo, R. S.; Oliveira, I. F.; da Silva, V. M.; Prata, A. S.; Hubinger, M. D. Int J Biol Macromol 2018, 119, 902–912. doi:10.1016/J.IJBIOMAC.2018.07.174
(14) Zhou, M.; Hou, J.; Zhong, Z.; Hao, N.; Lin, Y.; Li, C. Drug Deliv 2018, 25, 716–722. doi:10.1080/10717544.2018.1447050
(15) Jain, A.; Mishra, S. K.; Vuddanda, P. R.; Singh, S. K.; Singh, R.; Singh, S. Nanomedicine 2014, 10, e1031–e1040. doi:10.1016/j.nano.2014.01.008
(16) Zewail, M.; Nafee, N.; Helmy, M. W.; Boraie, N. Drug Delivery and Translational Research 2021 2021, 1–24. doi:10.1007/S13346-021-00992-9
(17) Akbari, J.; Saeedi, M.; Ahmadi, F.; Hashemi, S. M. H.; Babaei, A.; Yaddollahi, S.; Rostamkalaei, S. S.; Asare-Addo, K.; Nokhodchi, A. Pharm Dev Technol 2022, 1–53. doi:10.1080/10837450.2022.2084554
(18) Wiese, M. D.; Rowland, A.; Polasek, T. M.; Sorich, M. J.; O’Doherty, C. Expert Opin Drug Metab Toxicol 2013, 1025–1035. doi:10.1517/17425255.2014.894019
(19) Zewail, M.; Nafee, N.; Helmy, M. W.; Boraie, N. Int J Pharm 2019, 567, 118447. doi:10.1016/j.ijpharm.2019.118447
(20) Zhao, L.; Liu, M.; Wang, J.; Zhai, G. Chondroitin Sulfate-Based Nanocarriers for Drug/Gene Delivery. Carbohydrate Polymers. Elsevier Ltd July 30, 2015, pp 391–399. doi:10.1016/j.carbpol.2015.07.063
(21) Shilpi, S.; Upadhaye, S.; Shivvedi, R.; Gurnany, E.; Chimaniya, P.; Singh, A.; Chouhan, M.; Khatri, K. Asian J Pharm Pharmacol 2019, 5, 495–502. doi:10.31024/ajpp.2019.5.3.10
(22) Scioli Montoto, S.; Muraca, G.; Ruiz, M. E. Front Mol Biosci 2020, 7. doi:10.3389/fmolb.2020.587997
(23) Nnamani, P. O.; Hansen, S.; Windbergs, M.; Lehr, C. M. Int J Pharm 2014, 477, 208–217. doi:10.1016/j.ijpharm.2014.10.004
(24) Rudhrabatla, V. S. A. P.; Sudhakar, B.; Reddy, K. V. N. S. BioNanoScience 2019 10:1 2019, 10, 168–190. doi:10.1007/S12668-019-00680-6
(25) Van Roon, E. N.; Yska, J. P.; Raemaekers, J.; Jansen, T. L. T. A.; Van Wanrooy, M.; Brouwers, J. R. B. J. J Pharm Biomed Anal 2004, 36, 17–22. doi:10.1016/j.jpba.2004.05.019
(26) ICH Expert Working Group. STABILITY TESTING OF NEW DRUG SUBSTANCES AND PRODUCTS Q1A(R2). In International Journal of Pharmaceutical Sciences Review and Research; 2003; Vol. 2, p 18. doi:10.1136/bmj.333.7574.873-a
(27) Pandian, S. R. K.; Pavadai, P.; Vellaisamy, S.; Ravishankar, V.; Palanisamy, P.; Sundar, L. M.; Chandramohan, V.; Sankaranarayanan, M.; Panneerselvam, T.; Kunjiappan, S. Naunyn Schmiedebergs Arch Pharmacol 2020. doi:10.1007/s00210-020-02015-9
(28) Mahtab, A.; Rabbani, S. A.; Neupane, Y. R.; Pandey, S.; Ahmad, A.; Khan, M. A.; Gupta, N.; Madaan, A.; Jaggi, M.; Sandal, N.; Rawat, H.; Aqil, M.; Talegaonkar, S. Carbohydr Polym 2020, 250, 116926. doi:10.1016/j.carbpol.2020.116926
(29) Elmowafy, M.; Shalaby, K.; Badran, M. M.; Ali, H. M.; Abdel-Bakky, M. S.; Ibrahim, H. M. Int J Pharm 2018, 550, 359–371. doi:10.1016/J.IJPHARM.2018.08.062
(30) Martins, S.; Tho, I.; Souto, E.; Ferreira, D.; Brandl, M. European Journal of Pharmaceutical Sciences 2012, 45, 613–623. doi:10.1016/j.ejps.2011.12.015
(31) Gordillo-Galeano, A.; Mora-Huertas, C. E. European Journal of Pharmaceutics and Biopharmaceutics 2018, 133, 285–308. doi:10.1016/j.ejpb.2018.10.017
(32) Aslam, M.; Aqil, M.; Ahad, A.; Najmi, A. K.; Sultana, Y.; Ali, A. J Mol Liq 2016, 219, 897–908. doi:10.1016/J.MOLLIQ.2016.03.069
(33) Kim, M.-H.; Kim, K.-T.; Sohn, S.-Y.; Lee, J.-Y.; Lee, C. H.; Yang, H.; Lee, B. K.; Lee, K. W.; Kim, D.-D. Int J Nanomedicine 2019, 14, 8509. doi:10.2147/IJN.S215835
(34) Salvi, V. R.; Pawar, P. J Drug Deliv Sci Technol 2019, 51, 255–267. doi:10.1016/J.JDDST.2019.02.017
(35) Raina, H.; Kaur, S.; Jindal, A. B. J Drug Deliv Sci Technol 2017, 39, 180–191. doi:10.1016/j.jddst.2017.02.013
(36) Kiss, E. L.; Berkó, S.; Gácsi, A.; Kovács, A.; Katona, G.; Soós, J.; Csányi, E.; Gróf, I.; Harazin, A.; Deli, M. A.; Budai-Szűcs, M. Pharmaceutics 2019, 11. doi:10.3390/PHARMACEUTICS11120679
(37) Soni, K.; Rizwanullah, Md.; Kohli, K. https://doi.org/10.1080/21691401.2017.1408124 2017, 46, 15–31. doi:10.1080/21691401.2017.1408124
(38) Emami, J.; Ansarypour, Z. Res Pharm Sci 2019, 14, 471–487. doi:10.4103/1735-5362.272534
(39) Liu, L.; Guo, W.; Liang, X.-J. Biotechnol J 2019, 14, 1800024. doi:10.1002/biot.201800024
(40) Wang, Q.; Sun, X. Biomater Sci 2017, 5, 1407–1420. doi:10.1039/c7bm00254h
(41) Bashiri, S.; Ghanbarzadeh, B.; Ayaseh, A.; Dehghannya, J.; Ehsani, A. LWT 2020, 119, 108836. doi:10.1016/J.LWT.2019.108836
(42) Trujillo, C. C.; Wright, A. J. J Am Oil Chem Soc 2010, 87, 165–196. doi:10.1039/9781847550842-00103
(43) Pirmardvand Chegini, S.; Varshosaz, J.; Taymouri, S. Artif Cells Nanomed Biotechnol 2018, 46, 502–514. doi:10.1080/21691401.2018.1460373
(44) Ebada, H. M. K.; Nasra, M. M. A.; Nassra, R. A.; Abdallah, O. Y. Drug Deliv 2022, 29, 652–663. doi:10.1080/10717544.2022.2041130
(45) Da Silva, I. M.; Boelter, J. F.; Da Silveira, N. P.; Brandelli, A. Journal of Nanoparticle Research 2014, 16, 1–10. doi:10.1007/s11051-014-2479-y
(46) Sharma, A.; Baldi, A. J Dev Drugs 2018. doi:10.4172/2329-6631.1000191
(47) Mahtab, A.; Rizwanullah, M.; Pandey, S.; Leekha, A.; Rabbani, S. A.; Verma, A. K.; Aqil, M.; Talegaonkar, S. J Drug Deliv Sci Technol 2019, 51, 383–396. doi:10.1016/j.jddst.2019.03.008
(48) Kar, N.; Chakraborty, S.; De, A. K.; Ghosh, S.; Bera, T. European Journal of Pharmaceutical Sciences 2017, 104, 196–211. doi:10.1016/j.ejps.2017.03.046
(49) Shah, B.; Khunt, D.; Bhatt, H.; Misra, M.; Padh, H. J Drug Deliv Sci Technol 2016, 33, 37–50. doi:10.1016/j.jddst.2016.03.008
(50) Khan, S.; Shaharyar, M.; Fazil, M.; Baboota, S.; Ali, J. European Journal of Pharmaceutics and Biopharmaceutics 2016, 108, 277–288. doi:10.1016/j.ejpb.2016.07.017
(51) Zewail, M.; EL-Deeb, N. M.; Mousa, M. R.; Abbas, H. Int J Pharm 2022, 623. doi:10.1016/j.ijpharm.2022.121939
(52) Gadhave, D.; Rasal, N.; Sonawane, R.; Sekar, M.; Kokare, C. Int J Biol Macromol 2021, 167, 906–920. doi:10.1016/J.IJBIOMAC.2020.11.047
(53) Jenning, V.; Thünemann, A. F.; Gohla, S. H. Int J Pharm 2000, 199, 167–177. doi:10.1016/S0378-5173(00)00378-1
(54) Almeida, O. P.; de Freitas Marques, M. B.; de Oliveira, J. P.; da Costa, J. M. G.; Rodrigues, A. P.; Yoshida, M. I.; Mussel, W. da N.; Carneiro, G. J Food Sci Technol 2022, 59, 805–814. doi:10.1007/s13197-021-05078-5
(55) Castro, G. A.; Ferreira, L. A. M.; Oréfice, R. L.; Buono, V. T. L. Powder Diffr 2008, 23, S30–S35. doi:10.1154/1.2903515
(56) Pinheiro, M.; Ribeiro, R.; Vieira, A.; Andrade, F.; Reis, S. Drug Des Devel Ther 2016, 10, 2467–2475. doi:10.2147/DDDT.S104395
(57) Das, S.; Ghosh, S.; De, A. K.; Bera, T. Int J Biol Macromol 2017, 102, 996–1008. doi:10.1016/j.ijbiomac.2017.04.098
(58) Gadhave, D. G.; Kokare, C. R. Drug Dev Ind Pharm 2019, 45, 839–851. doi:10.1080/03639045.2019.1576724
(59) Pandey, S.; Kumar, V.; Leekha, A.; Rai, N.; Ahmad, F. J.; Verma, A. K.; Talegaonkar, S. Pharm Res 2018, 35, 1–17. doi:10.1007/s11095-018-2478-2
(60) Chuang, S. Y.; Lin, C. H.; Huang, T. H.; Fang, J. Y. Nanomaterials 2018, 8, 42. doi:10.3390/nano8010042
(61) H. Muller, R.; Shegokar, R.; M. Keck, C. Curr Drug Discov Technol 2011, 8, 207–227. doi:10.2174/157016311796799062

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP