JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 68 No 2 (2023): Journal of the Chilean Chemical Society
Reviews

POLYMERS RECYCLING: UPCYCLING TECHNIQUES. AN OVERVIEW

Bernabe L Rivas
Universidad de Concepcion
Published August 22, 2023
Keywords
  • Plastics,
  • contamination,
  • recycling,
  • environment
How to Cite
Martina Zúñiga D, Francisca L. Aranda, & Rivas, B. L. (2023). POLYMERS RECYCLING: UPCYCLING TECHNIQUES. AN OVERVIEW. Journal of the Chilean Chemical Society, 68(2), 5876-5886. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/2435

Abstract

Since 1950 plastics became the materials of greatest world production. Thus, in recent years the increase in the use of different types of plastics has been a matter of global concern due to the depletion of fossil fuels and the accumulation of waste in the different environmental matrices, affecting the ecosystem. By 2015, 4.9 million metric tons of plastic waste were recorded in landfills, because more than 40% of the plastics produced are designed for single use. The mass amount of plastic is estimated to exceed 450 million tonnes per year and will double by 2045.

Due to the great problem of plastics and their threats to the ecosystem, the researchers worked on a large number of technologies to mitigate the effect of plastics on the different environmental matrices. Therefore, the main goal of this manuscript is summarizes on the plastics more used as well as the most common techniques to reduce their presence at the environment. 

2435.JPG

References

  1. Al-Shalawi FD, Hanim MA, Ariffin M, Kim CLS, Brabazon D, Calin R, et al. Biodegradable synthetic polymer in orthopaedic application: A review. Materials Today: Proceedings. 2023.
  2. Li T, Chen L, Yuan Y, Shi R. The Current Status, Prospects, and Challenges of Shape Memory Polymers Application in Bone Tissue Engineering. Polymers. 2023;15(3):556.
  3. Wu J, Yang S, Wang S, Jiang Z, Gao C, Wang L. Optimizing thermoelectric performance of two-dimensional donor-donor benzodithiophene-based conjugated polymers using backbone engineering. Composites Communications. 2023;37:101461.
  4. Mooney M, Nyayachavadi A, Awada A, Iakovidis E, Wang Y, Chen M-N, et al. Asymmetric Side-Chain Engineering in Semiconducting Polymers: A Platform for Greener Processing and Post-Functionalization of Organic Electronics. Polymer Chemistry. 2023.
  5. Jíménez-Arias D, Morales-Sierra S, Silva P, Carrêlo H, Gonçalves A, Ganança JFT, et al. Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. Plants. 2023;12(1):55.
  6. Riseh RS, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydrate Polymers. 2023:120666.
  7. Amarjargal B, Taşdemir T. Improving Flocculation Performance of Copper Flotation Tailings by Conventional and New Technology Polymers. Water, Air, & Soil Pollution. 2023;234(2):67.
  8. de Greef TFA, Meijer EW. Supramolecular polymers. Nature. 2008;453(7192):171-3.
  9. Wang C, Song L, Sun G. Comparison and correlation between polymer modified asphalt binders and mastics in high-and intermediate-temperature rheological behaviors. Construction and Building Materials. 2023;364:129963.
  10. Jíménez-Arias D, Morales-Sierra S, Silva P, Carrêlo H, Gonçalves A, Ganança JFT, et al. Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. Plants. 2023;12(1):55.
  11. Lozano-Hernández EA, Ramirez-Alvarez N, Rios Mendoza LM, Macías-Zamora JV, Mejía-Trejo A, Beas-Luna R, et al. Microplastic Pollution Found Across Trophic Levels in a Kelp Forest in Baja California. a Kelp Forest in Baja California.
  12. Al-Shalawi FD, Azmah Hanim MA, Ariffin MKA, Looi Seng Kim C, Brabazon D, Calin R, et al. Biodegradable synthetic polymer in orthopaedic application: A review. Materials Today: Proceedings. 2023;74:540-6.
  13. Raji M, Halloub A, el Kacem Qaiss A, Bouhfid R. Bioplastic‐Based Nanocomposites for Smart Materials. Handbook of Bioplastics and Biocomposites Engineering Applications. 2023:457-70.
  14. Von Vacano B, Mangold H, Vandermeulen GWM, Battagliarin G, Hofmann M, Bean J, et al. Sustainable Design of Structural and Functional Polymers for a Circular Economy. Angewandte Chemie International Edition. 2023;62(12).
  15. Abrha H, Cabrera J, Dai Y, Irfan M, Toma A, Jiao S, et al. Bio-based plastics production, impact and end of life: a literature review and content analysis. Sustainability. 2022;14(8):4855.
  16. Jamróz E, Kulawik P, Kopel P. The effect of nanofillers on the functional properties of biopolymer-based films: A review. Polymers. 2019;11(4):675.
  17. Law KL, Narayan R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nature Reviews Materials. 2022;7(2):104-16.
  18. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Science advances. 2017;3(7):e1700782.
  19. Streit-Bianchi M, Cimadevila M, Trettnak W. Mare Plasticum-The Plastic Sea: Springer; 2020.
  20. Dris R, Imhof H, Sanchez W, Gasperi J, Galgani F, Tassin B, et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles. Environmental chemistry. 2015;12(5):539-50.
  21. Monteiro RC, do Sul JAI, Costa MF. Plastic pollution in islands of the Atlantic Ocean. Environmental Pollution. 2018;238:103-10.
  22. Wang P, Ding Y, Zhu L, Zhang Y, Zhou S, Xie L, et al. Oxidative degradation/mineralization of dimethyl phthalate (DMP) from plastic industrial wastewater using ferrate (VI)/TiO 2 under ultraviolet irradiation. Environmental Science and Pollution Research. 2022:1-13.
  23. Matthews C, Moran F, Jaiswal AK. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. Journal of cleaner production. 2021;283:125263.
  24. Sharma R, Ghoshal G. Emerging trends in food packaging. Nutrition & Food Science. 2018;48(5):764-79.
  25. Duis K, Coors A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe. 2016;28(1):1-25.
  26. Lim BKH, Thian ES. Biodegradation of polymers in managing plastic waste — A review. Science of The Total Environment. 2022;813:151880.
  27. Andrady AL. Microplastics in the marine environment. Marine pollution bulletin. 2011;62(8):1596-605.
  28. Anagnosti L, Varvaresou A, Pavlou P, Protopapa E, Carayanni V. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Marine Pollution Bulletin. 2021;162:111883.
  29. Royer S-J, Ferrón S, Wilson ST, Karl DM. Production of methane and ethylene from plastic in the environment. PloS one. 2018;13(8):e0200574.
  30. Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental science & technology. 2018;52(4):1704-24.
  31. Organization WH. Shortage of personal protective equipment endangering health workers worldwide. Newsroom, March. 2020;3:2020.
  32. Picó Y, Barceló D. Microplastics and other emerging contaminants in the environment after COVID-19 pandemic: the need of global reconnaissance studies. Current Opinion in Environmental Science & Health. 2023:100468.
  33. Sun J, Yang S, Zhou G-J, Zhang K, Lu Y, Jin Q, et al. Release of microplastics from discarded surgical masks and their adverse impacts on the marine copepod Tigriopus japonicus. Environmental Science & Technology Letters. 2021;8(12):1065-70.
  34. March D, Metcalfe K, Tintoré J, Godley BJ. Tracking the global reduction of marine traffic during the COVID-19 pandemic. Nature communications. 2021;12(1):2415.
  35. Vince J. A creeping crisis when an urgent crisis arises: The reprioritization of plastic pollution issues during COVID-19. Politics & Policy. 2023;51(1):26-40.
  36. Diaz-Kope L, Morris JC. Why collaborate? Exploring the role of organizational motivations in cross-sector watershed collaboration. Politics & Policy. 2022;50(3):516-39.
  37. Gerlach JD, Williams LK, Forcina CE. The Science-Natural Resource Policy Relationship: How Aspects of Diffusion Theory Explain Data Selection for Making Biodiversity Management Decisions. Politics & Policy. 2013;41(3):326-54.
  38. An R, Liu C, Wang J, Jia P. Recent Advances in Degradation of Polymer Plastics by Insects Inhabiting Microorganisms. Polymers. 2023;15(5):1307.
  39. Jung H, Shin G, Kwak H, Hao LT, Jegal J, Kim HJ, et al. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. Chemosphere. 2023:138089.
  40. Aranda FL, Gayoso A, Palma-Onetto V, Rivas BL. REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTIONS BY USING RESINS FROM PINUS RADIATA BARK RESINS. Journal of the Chilean Chemical Society. 2022;67(1):5403-7.
  41. Bartoli M, Arrigo R, Malucelli G, Tagliaferro A, Duraccio D. Recent Advances in Biochar Polymer Composites. Polymers. 2022;14(12):2506.
  42. Webb HK, Arnott J, Crawford RJ, Ivanova EP. Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers. 2012;5(1):1-18.
  43. Waheed R, Sarwar S, Alsaggaf MI. Relevance of energy, green and blue factors to achieve sustainable economic growth: Empirical study of Saudi Arabia. Technological Forecasting and Social Change. 2023;187:122184.
  44. Roy PS, Garnier G, Allais F, Saito K. Strategic Approach Towards Plastic Waste Valorization: Challenges and Promising Chemical Upcycling Possibilities. ChemSusChem. 2021;14(19):4007-27.
  45. Gomollón-Bel F. Ten Chemical Innovations That Will Change Our World: IUPAC identifies emerging technologies in Chemistry with potential to make our planet more sustainable. Chemistry International. 2019;41(2):12-7.
  46. Chen H, Wan K, Zhang Y, Wang Y. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. ChemSusChem. 2021;14(19):4123-36.
  47. Chen X, Wang Y, Zhang L. Recent Progress in the Chemical Upcycling of Plastic Wastes. ChemSusChem. 2021;14(19):4137-51.
  48. Thiounn T, Smith RC. Advances and approaches for chemical recycling of plastic waste. Journal of Polymer Science. 2020;58(10):1347-64.
  49. George N, Kurian T. Recent developments in the chemical recycling of postconsumer poly (ethylene terephthalate) waste. Industrial & Engineering Chemistry Research. 2014;53(37):14185-98.
  50. Chanda M. Chemical aspects of polymer recycling. Advanced Industrial and Engineering Polymer Research. 2021;4(3):133-50.
  51. Lefeuvre A, Garnier S, Jacquemin L, Pillain B, Sonnemann G. Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050. Resources, Conservation and Recycling. 2017;125:264-72.
  52. Pillain B, Loubet P, Pestalozzi F, Woidasky J, Erriguible A, Aymonier C, et al. Positioning supercritical solvolysis among innovative recycling and current waste management scenarios for carbon fiber reinforced plastics thanks to comparative life cycle assessment. The Journal of Supercritical Fluids. 2019;154:104607.
  53. Lebedeva EA, Astaf’eva SA, Istomina TS, Trukhinov DK, Il’inykh GV, Slyusar’ NN. Application of Low-Temperature Solvolysis for Processing of Reinforced Carbon Plastics. Russian Journal of Applied Chemistry. 2020;93(6):845-53.
  54. Gradus RH, Nillesen PH, Dijkgraaf E, Van Koppen RJ. A cost-effectiveness analysis for incineration or recycling of Dutch household plastic waste. Ecological Economics. 2017;135:22-8.
  55. Zhao X, Korey M, Li K, Copenhaver K, Tekinalp H, Celik S, et al. Plastic waste upcycling toward a circular economy. Chemical Engineering Journal. 2022;428:131928.
  56. Kosloski-Oh SC, Wood ZA, Manjarrez Y, De Los Rios JP, Fieser ME. Catalytic methods for chemical recycling or upcycling of commercial polymers. Materials Horizons. 2021;8(4):1084-129.
  57. Jehanno C, Demarteau J, Mantione D, Arno MC, Ruipérez F, Hedrick JL, et al. Synthesis of Functionalized Cyclic Carbonates through Commodity Polymer Upcycling. ACS Macro Letters. 2020;9(4):443-7.
  58. Knappich F, Klotz M, Schlummer M, Wölling J, Mäurer A. Recycling process for carbon fiber reinforced plastics with polyamide 6, polyurethane and epoxy matrix by gentle solvent treatment. Waste Management. 2019;85:73-81.
  59. Akiya N, Savage PE. Roles of water for chemical reactions in high-temperature water. Chemical reviews. 2002;102(8):2725-50.
  60. Das M, Chacko R, Varughese S. An efficient method of recycling of CFRP waste using peracetic acid. ACS sustainable chemistry & engineering. 2018;6(2):1564-71.
  61. Wei Y, Hadigheh SA. Development of an innovative hybrid thermo-chemical recycling method for CFRP waste recovery. Composites Part B: Engineering. 2023;260:110786.
  62. Tian Z-s, Wang Y-q, Hou X-l. Review of chemical recycling and reuse of carbon fiber reinforced epoxy resin composites. New Carbon Materials. 2022;37(6):1021-41.
  63. Rylander PN. Hydrogenation methods: Academic Press; 1990.
  64. Kumar A, von Wolff N, Rauch M, Zou Y-Q, Shmul G, Ben-David Y, et al. Hydrogenative depolymerization of nylons. Journal of the American Chemical Society. 2020;142(33):14267-75.
  65. Vollmer I, Jenks MJ, Roelands MC, White RJ, van Harmelen T, de Wild P, et al. Beyond mechanical recycling: Giving new life to plastic waste. Angewandte Chemie International Edition. 2020;59(36):15402-23.
  66. Wei J, Liu J, Zeng W, Dong Z, Song J, Liu S, et al. Catalytic hydroconversion processes for upcycling plastic waste to fuels and chemicals. Catalysis Science & Technology. 2023;13(5):1258-80.
  67. Westhues S, Idel J, Klankermayer J. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Science advances. 2018;4(8):eaat9669.
  68. áMc Ilrath SP. Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium (II) PNN pincer complexes. Chemical Communications. 2014;50(38):4884-7.
  69. Jing Y, Wang Y, Furukawa S, Xia J, Sun C, Hülsey MJ, et al. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angewandte Chemie International Edition. 2021;60(10):5527-35.
  70. Du B, Chen X, Ling Y, Niu T, Guan W, Meng J, et al. Hydrogenolysis-Isomerization of Waste Polyolefin Plastics to Multibranched Liquid Alkanes. ChemSusChem. 2023;16(3):e202202035.
  71. Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K. Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Applied Catalysis B: Environmental. 2010;94(3-4):318-26.
  72. Guan W, Chen X, Hu H, Tsang C-W, Zhang J, Lin CSK, et al. Catalytic hydrogenolysis of lignin β-O-4 aryl ether compound and lignin to aromatics over Rh/Nb2O5 under low H2 pressure. Fuel Processing Technology. 2020;203:106392.
  73. Zuluaga F. Algunas aplicaciones del ácido poli-L-láctico. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 2013;37(142):125-42.
  74. Xu J, Zhou K, Fu J, Tan Z, Qin L, Duan P, et al. Near-zero-waste hydrogenolysis of poly(lactic acid) to biofuel. Fuel. 2023;334:126609.
  75. Garcia JM, Robertson ML. The future of plastics recycling. Science. 2017;358(6365):870-2.
  76. Law KL, Thompson RC. Microplastics in the seas. Science. 2014;345(6193):144-5.
  77. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental science & technology. 2011;45(21):9175-9.
  78. Bergmann M, Gutow L, Klages M. Marine anthropogenic litter: Springer Nature; 2015.
  79. Aranda F, Rivas BL. MICROPLASTICS: FORMATION, DISPOSITION, AND ASSOCIATED DANGERS. AN OVERVIEW. Journal of the Chilean Chemical Society. 2023;68(1):5755-61.
  80. Uekert T, Kuehnel MF, Wakerley DW, Reisner E. Plastic waste as a feedstock for solar-driven H 2 generation. Energy & Environmental Science. 2018;11(10):2853-7.
  81. Uekert T, Kuehnel MF, Wakerley DW, Reisner E. Plastic waste as a feedstock for solar-driven H2 generation. Energy & Environmental Science. 2018;11(10):2853-7.
  82. Uekert T, Kasap H, Reisner E. Photoreforming of Nonrecyclable Plastic Waste over a Carbon Nitride/Nickel Phosphide Catalyst. Journal of the American Chemical Society. 2019;141(38):15201-10.
  83. Yadav S, Singh D, Mohanty P, Sarangi PK. Biochemical and thermochemical routes of H2 production from food waste: a comparative review. Chemical Engineering & Technology. 2023;46(2):191-203.
  84. Song H, Peng Y, Wang C, Shu L, Zhu C, Wang Y, et al. Structure Regulation of MOF Nanosheet Membrane for Accurate H2/CO2 Separation. Angewandte Chemie International Edition. 2023:e202218472.
  85. Hong X, Thaore VB, Garud SS, Karimi IA, Farooq S, Wang X, et al. Decarbonizing Singapore via local production of H2 from natural gas. International Journal of Hydrogen Energy. 2023;48(24):8743-55.
  86. Thompson L, Barbier F, Burns L, Friedland R, Kiczek E, Nozik A, et al. Report of the Hydrogen Production Expert Panel: A Subcommittee of the Hydrogen & Fuel Cell Technical Advisory Committee. Washington DC, USA, United States Department of Energy. 2013.
  87. Du M, Zhang Y, Kang S, Guo X, Ma Y, Xing M, et al. Trash to Treasure: Photoreforming of Plastic Waste into Commodity Chemicals and Hydrogen over MoS2-Tipped CdS Nanorods. ACS Catalysis. 2022;12(20):12823-32.
  88. Gong X, Tong F, Ma F, Zhang Y, Zhou P, Wang Z, et al. Photoreforming of plastic waste poly (ethylene terephthalate) via in-situ derived CN-CNTs-NiMo hybrids. Applied Catalysis B: Environmental. 2022;307:121143.
  89. Zhang G, Li G, Lan ZA, Lin L, Savateev A, Heil T, et al. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angewandte Chemie. 2017;129(43):13630-4.
  90. Yang L, Zeng L, Liu H, Deng Y, Zhou Z, Yu J, et al. Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental. 2019;249:98-105.
  91. Liu W, Yang Y, Chen L, Xu E, Xu J, Hong S, et al. Atomically-ordered active sites in NiMo intermetallic compound toward low-pressure hydrodeoxygenation of furfural. Applied Catalysis B: Environmental. 2021;282:119569.
  92. Worsley KA, Kalinina I, Bekyarova E, Haddon RC. Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes. Journal of the American Chemical Society. 2009;131(50):18153-8.
  93. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials. 2009;8(1):76-80.
  94. Wang Y, Biddle T, Jiang C, Luong T, Chen R, Brown S, et al. Microwave-driven upcycling of single-use plastics using zeolite catalyst. Chemical Engineering Journal. 2023;465:142918.
  95. Naik TP, Singh I, Sharma AK. Processing of polymer matrix composites using microwave energy: A review. Composites Part A: Applied Science and Manufacturing. 2022:106870.
  96. Chandrasekaran S, Ramanathan S, Basak T. Microwave material processing—a review. AIChE Journal. 2012;58(2):330-63.
  97. Mishra RR, Sharma AK. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing. 2016;81:78-97.
  98. Doores S. Microwave inactivation of pathogens. Control of Foodborne Microorganisms: CRC Press; 2001. p. 105-64.
  99. Osepchuk JM, editor The history of the microwave oven: A critical review. 2009 IEEE MTT-S International Microwave Symposium Digest; 2009: IEEE.
  100. Lee WI, Springer GS. Microwave curing of composites. Journal of Composite Materials. 1984;18(4):387-409.
  101. Naik TP, Singh I, Sharma AK. Processing of polymer matrix composites using microwave energy: A review. Composites Part A: Applied Science and Manufacturing. 2022;156:106870.
  102. Sun J, Wang W, Yue Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials. 2016;9(4):231.
  103. Thostenson E, Chou T-W. Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing. 1999;30(9):1055-71.
  104. Sharma A. Advanced manufacturing processes. 2014.
  105. Fan L, Liu L, Xiao Z, Su Z, Huang P, Peng H, et al. Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5. Energy. 2021;228:120612.
  106. Karimi Estahbanati MR, Kong XY, Eslami A, Soo HS. Current Developments in the Chemical Upcycling of Waste Plastics Using Alternative Energy Sources. ChemSusChem. 2021;14(19):4152-66.
  107. Goodman S. The microwave induced pyrolysis of problematic plastics enabling recovery and component reuse. 2014.
  108. Maddah HA. Polypropylene as a promising plastic: A review. Am J Polym Sci. 2016;6(1):1-11.
  109. Busico V, Cipullo R. Microstructure of polypropylene. Progress in Polymer Science. 2001;26(3):443-533.
  110. Ji LN, editor Study on preparation process and properties of polyethylene terephthalate (PET). Applied mechanics and materials; 2013: Trans Tech Publ.
  111. Nisticò R. Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing. 2020;90:106707.
  112. Jung H, Shin G, Kwak H, Hao LT, Jegal J, Kim HJ, et al. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. Chemosphere. 2023;320:138089.
  113. Jan P, Matkovič S, Bek M, Perše LS, Kalin M. Tribological behaviour of green wood-based unrecycled and recycled polypropylene composites. Wear. 2023;524-525:204826.
  114. Pasquini N, Addeo A. Polypropylene handbook. 2005.
  115. Stubbins A, Law KL, Muñoz SE, Bianchi TS, Zhu L. Plastics in the Earth system. Science. 2021;373(6550):51-5.
  116. Cavalcante J, Hardian R, Szekely G. Antipathogenic upcycling of face mask waste into separation materials using green solvents. Sustainable Materials and Technologies. 2022;32:e00448.
  117. Poulakis J, Papaspyrides C. Recycling of polypropylene by the dissolution/reprecipitation technique: I. A model study. Resources, conservation and recycling. 1997;20(1):31-41.
  118. Abdelhameed M, Elbeh M, Baban NS, Pereira L, Matula J, Song Y-A, et al. High-yield, one-pot upcycling of polyethylene and polypropylene waste into blue-emissive carbon dots. Green Chemistry. 2023;25(5):1925-37.
  119. Tian X, Zeng A, Liu Z, Zheng C, Wei Y, Yang P, et al. Carbon quantum dots: In vitro and in vivo studies on biocompatibility and biointeractions for optical imaging. International journal of nanomedicine. 2020:6519-29.
  120. Abraham JE, Balachandran M. Fluorescent Mechanism in Zero-Dimensional Carbon Nanomaterials: A Review. Journal of Fluorescence. 2022;32(3):887-906.
  121. Li Y, Yang H-P, Chen S, Wu X-J, Long Y-F. Simple preparation of carbon dots and application in cephalosporin detection. Journal of Nanoscience and Nanotechnology. 2021;21(12):6024-34.
  122. Passos SG, Kunst TH, Freitas DV, Navarro M. Paired electrosynthesis of ZnSe/ZnS quantum dots and Cu2+ detection by fluorescence quenching. Journal of Luminescence. 2020;228:117611.
  123. Nocito G, Calabrese G, Forte S, Petralia S, Puglisi C, Campolo M, et al. Carbon Dots as Promising Tools for Cancer Diagnosis and Therapy. Cancers. 2021;13(9):1991.
  124. Guo J, Li H, Ling L, Li G, Cheng R, Lu X, et al. Green Synthesis of Carbon Dots toward Anti-Counterfeiting. ACS Sustainable Chemistry & Engineering. 2020;8(3):1566-72.
  125. Eagan JM, Xu J, Di Girolamo R, Thurber CM, Macosko CW, LaPointe AM, et al. Combining polyethylene and polypropylene: Enhanced performance with PE/i PP multiblock polymers. Science. 2017;355(6327):814-6.
  126. Irez AB, Okan C, Kaya R, Cebe E. Development of recycled disposable mask based polypropylene matrix composites: Microwave self-healing via graphene nanoplatelets. Sustainable Materials and Technologies. 2022;31:e00389.
  127. Cui Y, Zhang Y, Cui L, Liu Y, Li B, Liu W. Microwave-assisted pyrolysis of polypropylene plastic for liquid oil production. Journal of Cleaner Production. 2023;411:137303.
  128. Xu J, Jiao X, Zheng K, Shao W, Zhu S, Li X, et al. Plastics-to-syngas photocatalysed by Co–Ga2O3 nanosheets. National Science Review. 2022;9(9).
  129. PlasticsEurope E. Plastics—the facts 2019. An analysis of European plastics production, demand and waste data. PlasticEurope https://www plasticseurope org/en/resources/publications/1804-plastics-facts-2019. 2019.
  130. Ekanayaka AH, Tibpromma S, Dai D, Xu R, Suwannarach N, Stephenson SL, et al. A Review of the Fungi That Degrade Plastic. Journal of Fungi. 2022;8(8):772.
  131. Chu J, Zhou Y, Cai Y, Wang X, Li C, Liu Q. Life-cycle greenhouse gas emissions and the associated carbon-peak strategies for PS, PVC, and ABS plastics in China. Resources, Conservation and Recycling. 2022;182:106295.
  132. Shen Z, Guo L, Wang Y, Chen K, Zhao Y. Investigation of environmental burden for waste plastic flotation recovery. Physics and Chemistry of the Earth, Parts A/B/C. 2023;129:103328.
  133. McAllister HP, Kalow JA. Tandem triumphs in PVC upcycling. Chem Catalysis. 2023;3(3):100578.
  134. Feng B, Jing Y, Liu X, Guo Y, Wang Y. Waste PVC upcycling: Transferring unmanageable Cl species into value-added Cl-containing chemicals. Applied Catalysis B: Environmental. 2023;331:122671.
  135. Windels S, Diefenhardt T, Jain N, Marquez C, Bals S, Schlummer M, et al. Catalytic upcycling of PVC waste-derived phthalate esters into safe, hydrogenated plasticizers†. Green Chemistry. 2022;24(2):754-66.
  136. Xiu F-R, Lu Y, Qi Y. DEHP degradation and dechlorination of polyvinyl chloride waste in subcritical water with alkali and ethanol: A comparative study. Chemosphere. 2020;249:126138.
  137. Kim N-K, Lee S-H, Park H-D. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review. Bioresource Technology. 2022;363:127931.
  138. Geyer R. Production, use, and fate of synthetic polymers. Plastic waste and recycling: Elsevier; 2020. p. 13-32.
  139. Lamb JB, Willis BL, Fiorenza EA, Couch CS, Howard R, Rader DN, et al. Plastic waste associated with disease on coral reefs. Science. 2018;359(6374):460-2.
  140. Wang J, Liu X, Li Y, Powell T, Wang X, Wang G, et al. Microplastics as contaminants in the soil environment: A mini-review. Science of the total environment. 2019;691:848-57.
  141. Jia Y, Samak NA, Hao X, Chen Z, Yang G, Zhao X, et al. Nano-immobilization of PETase enzyme for enhanced polyethylene terephthalate biodegradation. Biochemical Engineering Journal. 2021;176:108205.
  142. Ahmaditabatabaei S, Kyazze G, Iqbal HMN, Keshavarz T. Fungal Enzymes as Catalytic Tools for Polyethylene Terephthalate (PET) Degradation. Journal of Fungi. 2021;7(11):931.
  143. da Costa AM, de Oliveira Lopes VR, Vidal L, Nicaud J-M, de Castro AM, Coelho MAZ. Poly (ethylene terephthalate)(PET) degradation by Yarrowia lipolytica: Investigations on cell growth, enzyme production and monomers consumption. Process Biochemistry. 2020;95:81-90.
  144. Kaushal J, Khatri M, Arya SK. Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini-review. Cleaner Engineering and Technology. 2021;2:100083.
  145. Hachisuka S-i, Nishii T, Yoshida S. Development of a targeted gene disruption system in the poly (ethylene terephthalate)-degrading bacterium Ideonella sakaiensis and its applications to PETase and MHETase genes. Applied and environmental microbiology. 2021;87(18):e00020-21.
  146. Qian X, Jiang M, Dong W. Tandem chemical deconstruction and biological upcycling of poly (ethylene terephthalate). Trends in Biotechnology. 2023.
  147. Zia KM, Bhatti HN, Bhatti IA. Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive and functional polymers. 2007;67(8):675-92.
  148. Wei K, Wu Y, Cao X, Yang X, Tang B, Shan B. Dual dynamic bonds approach for polyurethane recycling and self-healing of emulsified asphalt. Science of The Total Environment. 2023;885:163915.
  149. Esquer R, García JJ. Metal-catalysed Poly(Ethylene) terephthalate and polyurethane degradations by glycolysis. Journal of Organometallic Chemistry. 2019;902:120972.
  150. Yuan L, Zhou W, Shen Y, Li Z. Chemically recyclable polyurethanes based on bio-renewable γ-butyrolactone: From thermoplastics to elastomers. Polymer Degradation and Stability. 2022;204:110116.
  151. Schneiderman DK, Vanderlaan ME, Mannion AM, Panthani TR, Batiste DC, Wang JZ, et al. Chemically recyclable biobased polyurethanes. ACS Macro Letters. 2016;5(4):515-8.
  152. Cella RF, Mumbach GD, Andrade KL, Oliveira P, Marangoni C, Bolzan A, et al. Polystyrene recycling processes by dissolution in ethyl acetate. Journal of Applied Polymer Science. 2018;135(18):46208.
  153. Taylor P, Maharana T, Negi Y, Mohanty B. Recycling of Polystyrene. Polym-Plast Technol Eng. 2007;46:729-36.
  154. Maharana T, Negi YS, Mohanty B. Review Article: Recycling of Polystyrene. Polymer-Plastics Technology and Engineering. 2007;46(7):729-36.
  155. Bajdur W, Pajączkowska J, Makarucha B, Sułkowska A, Sułkowski WW. Effective polyelectrolytes synthesised from expanded polystyrene wastes. European Polymer Journal. 2002;38(2):299-304.
  156. Gibb BC. Plastics are forever. Nature Chemistry. 2019;11(5):394-5.
  157. Chen D, Xie Z, Ye H, Li W, Shi W, Liu Y. Upcycling of expanded polystyrene waste: Amination as adsorbent to recover Eriochrome Black T and Congo red. Separation and Purification Technology. 2022;289:120669.
  158. Achilias DS, Giannoulis A, Papageorgiou GZ. Recycling of polymers from plastic packaging materials using the dissolution–reprecipitation technique. Polymer Bulletin. 2009;63(3):449-65.
  159. Kampouris E, Papaspyrides C, Lekakou C. A model recovery process for scrap polystyrene foam by means of solvent systems. Conservation & recycling. 1987;10(4):315-9.
  160. Santiago L, Masmoudi Y, Tarancón A, Djerafi R, Bagán H, García J, et al. Polystyrene based sub-micron scintillating particles produced by supercritical anti-solvent precipitation. The Journal of Supercritical Fluids. 2015;103:18-27.
  161. García MT, Gracia I, Duque G, de Lucas A, Rodríguez JF. Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste management. 2009;29(6):1814-8.
  162. Hattori K, Shikata S, Maekawa R, Aoyama M. Dissolution of polystyrene into p-cymene and related substances in tree leaf oils. Journal of Wood Science. 2010;56(2):169-71.
  163. Shikata S, Watanabe T, Hattori K, Aoyama M, Miyakoshi T. Dissolution of polystyrene into cyclic monoterpenes present in tree essential oils. Journal of Material Cycles and Waste Management. 2011;13(2):127-30.
  164. Nikitas NF, Kokotos C. Photochemical aerobic upcycling of polystyrene plastics to commodity chemicals. 2022.
  165. Holleben MLAv, Calcagno CIW, Mauler RS. Métodos para a hidrogenação de ligações olefínicas em polímeros. Química Nova. 1999;22.
  166. Hucul DA, Hahn SF. Catalytic hydrogenation of polystyrene. Advanced Materials. 2000;12(23):1855-8.
  167. Capricho JC, Prasad K, Hameed N, Nikzad M, Salim N. Upcycling Polystyrene. Polymers. 2022;14(22):5010.
  168. Rex P, Masilamani IP, Miranda LR. Microwave pyrolysis of polystyrene and polypropylene mixtures using different activated carbon from biomass. Journal of the Energy Institute. 2020;93(5):1819-32.
  169. Suriapparao DV, Sridevi V, Ramesh P, Rao CS, Tukarambai M, Kamireddi D, et al. Synthesis of sustainable chemicals from waste tea powder and Polystyrene via Microwave-Assisted in-situ catalytic Co-Pyrolysis: Analysis of pyrolysis using experimental and modeling approaches. Bioresource Technology. 2022;362:127813.
  170. Ramzan F, Shoukat B, Naz MY, Shukrullah S, Ahmad F, Naz I, et al. Single step microwaves assisted catalytic conversion of plastic waste into valuable fuel and carbon nanotubes. Thermochimica Acta. 2022;715:179294.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP