JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 70 No 1 (2025): Journal of The Chilean Chemical Society
Reviews

AN EXPOSITION ON SPECTROPHOTOMETRIC DETERMINATION OF PLATINUM GROUP METALS

Tanu Arora
Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana
Nivedita Agnihotri
Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
Mohammad Azam
Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
Published September 5, 2025
Keywords
  • Platinum group metals,
  • Plainum metals,
  • PGMs,
  • Extraction,
  • Spectrophotometric determination
How to Cite
Arora, T., Agnihotri, N., & Azam, M. (2025). AN EXPOSITION ON SPECTROPHOTOMETRIC DETERMINATION OF PLATINUM GROUP METALS. Journal of the Chilean Chemical Society, 70(1), 6294-6308. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/2676

Abstract

In the realm of analytical chemistry, transition metal complexes especially the platinum group metals (PGMs) are often used compounds. Strong chromophores, inflexible luminous structures, biological potential and electrochemical activity are characteristics of the platinum metal complexes. These features have prompted the creation and study of analytical techniques based on these metal complexes for the identification of different analytes in a variety of analytical applications. Even if there are a few broad recommendations accessible to forecast a reagent's potentialities for the given goal, these studies show that sensitivity and selectivity imparted by the reagent to the metal in respective complex must be established. The quest for novel reagents is an ongoing effort to the wide and varied need for new ways to identify and analyze the metal ions under the peculiar conditions. In light of the frightening and complicated issue of environmental contamination, the endeavor of developing new and innovative reagents as well as techniques for inorganic analysis of PGMs have particular relevance. Of the numerous methodologies, the UV/VIS spectrophotometric determination technique of the PGM complexes is of interest being reliable, easy to handle, quick, cost effective, selective and sensitive. The technique relies on the process of interaction between an analyte and the metal, which are then determined analytically. In light of the enrichment of platinum group metals, the purpose of this article is to outline current research in the methods of spectrophotometric determination of PGMs. The review will assist researchers in formulating and refining PGMs as workable candidates for applications in medicine, pharmacology, analysis and catalysis.

2676.jpg

References

  1. References
  2. C.R.M. Rao, G.S. Reddi. Platinum group metals (PGMs); occurrence, use and recent trends in their determination. Trends in Analytical Chemistry, 2000, 19(9), 565-586. https://doi.org/10.1016/S0165-9936(00)00031-5
  3. H. Renne, G. Schlamp, I. Kleinwächter, E. Drost, H.M. Lüschow, P. Tews, P. Panster, M. Diehl, J. Lang, T. Kreuzer, A. Knodler, K.A. Starz, K. Dermann, J. Rothaut, R. Drieselmann, C. Peter, R. Schiele, J. Coombes, M. Hosford, D.F. Lupton. Platinum Group Metals and Compounds. Ullmann’s Encyclopedia of Industrial Chemisty, 2018, 28, 1-73. http://dx.doi.org/10.1002/9783527306732.a21_075.pub2
  4. A.S. Darling. Some Properties and Applications of the Platinum-Group Metals. International Metallurgical Reviews, 1973, 18(3), 91–122. https://doi.org/10.1179/imtlr.1973.18.3.91
  5. H.E. Hilliard. Platinum Recycling in United States in 1988, U.S. Geological Survey: Reston, VA, USA, 2001. https://doi.org/10.3133/cir1196B
  6. A. Markowska, B. Kasprzak, K. Jaszczyńska-Nowinka, J. Lubin, J. Markowska. Noble metals in oncology.Współczesna Onkologia, 2015, 19(4), 271-275. https://doi.org/10.5114/wo.2015.54386
  7. J. Ohata, Z.T. Ball. Rhodium at the chemistry-biology interface, Dalton Transactions, 2018, 42, 14855-14860. https://doi.org/10.1039/C8DT03032D
  8. B M Anthony. "9. Platinum group metals". Metals and Alloys: Industrial Applications, Berlin, Boston: De Gruyter, 2016, 55-64. https://doi.org/10.1515/9783110441857-010
  9. A.E. Hughes, N. Haque, S.A. Northey, S. Giddey. Platinum Group Metals: A Review of Resources, Production and Usage with a focus on Catalysts. Resources, 2021, 10(9),93. https://doi.org/10.3390/resources10090093
  10. S. Rauch, B. Peucker-Ehrenbrink.Sources of Platinum Group Elements in the Environment, Platinum Metals in the Environment, 2014, 3-17. https://doi.org/10.1007/978-3-662-44559-4_1
  11. J.E. Mungall, A.J. Naldrett. Ore deposits of the Platinum-Group Elements, Elements, 2008, 4(4), 253-258. https://doi.org/10.2113/gselements.4.4.253
  12. F. Habashi. Two hundred years platinum group metals, Metall, 2003, 57(12), 798-805.
  13. M A Benvenuto. Metals and Alloys (Industrial Applications) || 9. Platinum group metals. , De Gruyter, 2016, 55-63. https://doi.org/10.1515/9783110441857-010
  14. K. Pianowska, J. Kluczka, G. Benke, K. Goc, J. Malarz, M. Ochmański, K. Leszczyńska-Sejda. Solvent Extraction as a Method of Recovery and Separation of Platinum Group Metals, Materials, 2023, 16(13), 4681. https://doi.org/10.3390/mal16134681
  15. F.R. Hartley, (Ed.). Chemistry of the platinum group metals: recent developments, Studies in Inorganic Chemistry, 1991, 11, 2-642.
  16. R. J. Seymour, J.O´Farrelly. Kirk-Othmer Encyclopedia of Chemical Technology || Platinum-Group Metals, 2012. https://doi.org/10.1002/0471238961.1612012019052513
  17. D. Givan. Precious Metals in Dentistry, Dental Clinics of North America, 2007, 51(3), 591-601. https://doi.org/10.1016/j.cden.2007.03.005
  18. J. Groothuis, N.F. Ramsey, G. M. J. Ramakers, G. van der Plasse. Physiological Challenges for Intracortical Electrodes, Brain Stimulation, 2014, 7(1), 1-6. https://doi.org/10.1016/j.brs.2013.07.001
  19. B.K. Woodward. Platinum group metals (PGMs) for permanent implantable electronic devices, Precious Metals for Biomedical Applications, 2014, 130-147. https://doi.org/10.1533/9780857099051.2.130
  20. A. Cowley, B. Woodward. A Healthy Future: Platinum in Medical Applications, Platinum Metals Reviews, 2011, 55(2), 98-107. https://doi.org/10.1595/147106711X566816
  21. Y. Bai, G. Aodeng, L. Ga, W. Hai, J. Ai. Research Progress of Metal Anticancer Drugs, Pharmaceutics, 2023, 15(12), 2750. https://doi.org/10.3390/pharmaceutics15122750
  22. C. Zhang, C. Xu, X. Gao, Q. Yao. Platinum-based drugs for cancer therapy and anti-tumor strategies, Theranostics, 2022, 12(5), 2115-2132. https://doi.org/10.7150/thno.69424
  23. A.T. Odularu, P.A. Ajibade, J.Z. Mbese, O.O Oyedeji. Developments in Platinum-Group Metals as Dual Antibacterial and Anticancer Agents, Journal of Chemistry, 2019, 5459461(1-18). https://doi.org/10.1155/2019/5459461
  24. Z. Marczenko, H. Freiser. Spectrophotometric Determination of Trace Elements, C R C Reviews in Analytical Chemistry, 1981, 11(3), 195-260. https://doi.org/10.1080/10408348108542732
  25. T.F. Vasekina, I.V. Boryagina, E.S. Pyatakhina, N.V. Rovinskay. Specific features of gravimetric determination of palladium in palladium containing objects. Inorganic Materials Applied Research, 2014, 50, 1371-1374. https://doi.org/10.1134/S0020168514140143
  26. T.M. Malyutina, B.V. Shneider, T.Y. Alekseeva, Y.A. Karpov. Determination of high concentrations of palladium by combined use of gravimetric and spectral analysis, Inorganic Materials Applied Research, 2013, 49(14), 1277-1282. https://doi.org/10.1134/S0020168513140070
  27. G.A. Ottewill, B.A. Plunkett, F.C. Walsh. The Analysis of Metal Ions in Solution. Transactions of the IMF, 1993, 166-170. https://doi.org/10.1080/00202967.1993.11871012
  28. A. Shams, N. Ashraf, M.H. Arbab Zavar, M. Masrournia. Electrochemical generation of palladium volatile species enhanced with Sn(II): application for detection of Pd(II) by pyrolytic graphite coated furnace atomic absorption spectrometry, Journal of Analytical Atomic Spectrometry, 2019, 5, 963-971. https://doi.org/10.1039/C8JA00406D
  29. X. Jia . Determination of palladium by graphite furnace atomic absorption spectroscopy without matrix matching, Talanta, 2001, 54(4), 54(4), 741-751. http://dx.doi.org/10.1016/S0039-9140(01)00324-1
  30. N.S. Marinkovic, K. Sasaki, R.R. Adzic. Determination of Single- and Multi-Component Nanoparticle Sizes by X-ray Absorption Spectroscopy, Journal of Electrochemical Society, 2018, 165(15), J3222-J3230. https://doi.org/10.1149/2.0281815jes
  31. J.E. Jaine, M.R. Mucalo. Rapid determination of rhodium, palladium, and platinum in supported metal catalsts using multivariate analysis of laser induced breakdown spectroscopy data, Spectrochimica Acta, 2018, 145, 58-63. https://doi.org/10.1016/j.sab.2018.04.009
  32. D.D. Das, N. Sharma, P.A. Chawla. Neutron Activation Analysis: An Excellent Nondestructive Analytical Technique for Trace Metal Analysis, Critical reviews in Analytical Chemistry, 2023, 1-17. https://doi.org/10.1080/10408347.2023.2178841
  33. J.C.B Richard, M.J.T Milton. Analytical techniques for trace element analysis: an overview, Trends in Analytical Chemistry, 2005, 24(3), 266-274. https://doi.org/10.1016/j.trac.2004.11.010
  34. K. Liu, X.Gao, L. Li, C.-T. A., Chen, Q. Xing. Determination of ultra-trace Pt, Pd and Rh in seawater using an off-line pre-concentration method and inductively coupled plasma mass spectrometry, Chemosphere, 2018, 212, 429-437. https://doi.org/10.1016/j.chemosphere.2018.08.098
  35. Y. Yildiz, M. Kotb, A. Hussein, M. Sayedahmed, M. Rachid, M. Cheema. Determination of Palladium II in 5% Pd/BaSO4 by ICP-MS with Microwave Digestion, and UV-VIS Spectrophotometer, American Journal of Chemistry, 2019, 10(4), 127-136. https://doi.org/10.4236/ajac.2019.104011
  36. M.Y. Burylin, A.A. Pupyshev. Development of electrothermal atomic absorption spectrometry in 2005-2016, Journal of Analytical Chemistry, 2017, 72, 935-946. https://doi.org//10.1134/S1061934817090039
  37. M. Picollo, M. Aceto, T.Vitorino. UV-VIS spectroscopy, Physical Sciences Reviews, 2019, 1-14. https://doi.org/10.1515/psr-2018-000
  38. E. Bulska, A. Ruszczyńska. Analytical Techniques for Trace Element Determination, Physical Sciences Reviews, 2017, 2(5). http://doi.org/10.1515/psr-2017-8002
  39. N. Kaur, N. Agnihotri, R. Agnihotri, R.K. Sharma. A Treatise on Spectrophotometric Determination Techniques of Palladium(II) Ions, Journal of Chemical Reviews, 2022, 4(2), 81-99. https://doi.org/10.22034/jcr.2022.325620.1139
  40. M. Muhammad, S. Khan, S.A. Shehzadi , Z. Gul , H.M. Al-Saidi , A. W. Kamran , F. A. Alhumaydhi. Recent advances in colorimetric and fluorescent chemosensors based on thiourea derivatives for metallic cations: A review. Dyes and Pigments, 2022, 205(9), 110477. http://dx.doi.org/10.1016/j.dyepig.2022.110477
  41. B. Joseph, S. John, M. Prajila, A. Joseph. Spectrophotometric determination of osmium (VIII) in trace amounts using ethylene Thiourea (ETU) as chromogenic reagent, Indian Journal of Chemical Technology, 2011, 113-117.
  42. G. Bratulescu, G. Ion, G. Anca. Thiocyanatochrome complexes in analytical chemistry. Determination of osmium(III), Journal of the Serbian Chemical Society, 2005, 1113-1119. http://dx.doi.org/10.2298/JSC0509113B
  43. K.S. Patel, P.C. Sharma, S.G. Aggarwal, P. Hoffmann. Specific Spectrophotometric Determination of
  44. Palladium with N, N΄-Diphenylbenzimidoylthiourea, Analytical Letters, 2000, 33(3), 503-511.
  45. M. Dong-Lan, L. Ying, L. Quan-Jian, W. Yu-Lu. Spectrophotometric Determination of Palladium(II) with
  46. New Reagent N-octyl-N΄-(sodium-p-amminobenzenesulphonate thiourea), Journal of the Chinese
  47. Chemical Society, 2001, 48, 1111-1114.
  48. X. Zhang , Y. Zhou, H. Zhangjie, H. Qiufen, C. Jing , Y. Guangyu, X. Zhang, Y. Zhou, H. Zhangjie, H. Qiufen , C. Jing , Y. Guangyu, Study of Solid Phase Extraction Prior to Spectrophotometric Determination of Platinum with N-(3,5-Dimethylphenyl)-N΄-(4-Aminobenzenesulfonate)-Thiourea, Microchimica Acta, 2006, 153, 187-191.
  49. L. Zhigang , L. Xuemei, Z. Liya, Hu. Qiufen, C. Jing, Y. Guangyu. Solid phase extraction and spectrophotometric determination of platinum (IV) with N-(3,5-Dimethylphenyl)-N΄-(4-Aminobenzenesulfonate)-Thiourea, Indian Journal of Chemistry, 2006, 45A, 1852-1855.
  50. D. Ma, F. Cui, D. Xia, Y. Wang. Spectrophotometric Determination of Copper and Palladium using a new reagent, Analytical Letters, 2001, 35(2), 413–421. https://doi.org/10.1081/AL-120002539
  51. D. Ma, Y. Li, K. Ma, J. Li, J. Chen, Y. Wang. A high-selectivity spectrophotometric reagent for determining platinum (IV), Talanta, 2001, 53(5), 937-941. https://doi.org/10.1016/s0039-9140(00)00583-x
  52. Y. S. Shelar , H. R. Aher , S.R. Kuchekar, S. H. Han. Extractive spectrophotometric determination of palladium(II) with o-methyl phenyl thiourea from synthetic mixtures, Bulgarian Chemical Communications,2011, 45(2), 172-179.
  53. S.R. Kuchekar, Y.S. Shelar, S-H. Han. Spectrophotometric determination of platinum (IV) through the O-methylphenyl thiourea and iodide ternary complex after liquid-liquid extraction, Brazilian Journal of Analytical Chemistry, 2012, 3(10), 421-428.
  54. S.R. Kuchekar, Y.S. Shelar, H.R. Aher, S.H. Han. Development of a reliable analytical method for extraction spectrophotometric determination of ruthenium (III) from catalyst and fissium alloy using o-methylphenylthiourea as a chromogenic chelating ligand, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 106, 1–11. https://doi.org/10.1016/j.saa.2012.12.075
  55. S. Kuchekar, P. Bermejo-Barrera, Y. Shelar. Rapid and selective determination of osmium (IV) by UV-visible spectrophotometry using o -methylphenylthiourea as a chromogenic chelating ligand: sequential separation of osmium (IV), rhodium (III) and platinum (IV). International Journal of Environmental Analytical Chemistry, 2014, 94(5), 463–478. https://doi.org/10.1080/03067319.2013.879294
  56. Y.S. Shelar, S.R. Kuchekar, S.H. Han. Extraction spectrophotometric determination of rhodium (III) with o-methylphenylthiourea. Journal of Saudi Chemistry Society, 2015, 19, 616-627. https://doi.org/10.1016/j.jscs.2012.04.013
  57. S.R. Kuchekar, S.D. Pulate, Y.S. Shelar, S.H. Han. Spectrophotometric study of interaction of o-methylphenyl thiourea with iridium(III) and development of a precise determination method from hydrochloric acid media, Indian Journal of Chemical Technology, 2014, 21(2), 120-126.
  58. S. Kuchekar, R. Navalb, S.-H. Hanc. Development of a Reliable Method for the Spectrophotometric Determination of Palladium (II) with o-Methoxyphenyl Thiourea : Separation of Palladium from Associated Metal Ions, South African Journal of Chemical Engineering, 2014, 67, 226–232.
  59. S.R. Kuchekar, Y.S. Shelar, R.J. Bhor, M.A. Anuse, R.M. Naval. Separation and Spectrophotometric Determination of Osmium (IV) and Ruthenium (III) with O-methoxyphenyl Thiourea as Chromogenic Legand: Sequential Separation of Osmium (IV), ruthenium (III), and Platinum (IV).Separation Science and Technology, 2015, 50(8), 1190-1201. https://doi.org/10.1080.01496395.2014.983245
  60. D. Ma, G. Ding, J. Wang. Simultaneous determination of gold (III), palladium (II), and platinum (IV) with N-phenyl-N′-(sodium p-aminobenzenesulfonate) thiourea. Analytical and Bioanalytical Chemistry, 2002, 372(5-6), 740–743. https:/doi.org/10.1007/s00216-001-1219-1
  61. S.R. Kuchekar, H.R. Aher, S.D. Bhumkar, P. Ramasami. Solvent extraction separation and spectrophotometric determination of ruthenium (III) with p-methylphenyl thiourea: sequential separation of ruthenium, osmium and iron. Separation Science and Technology, 2019, 55(4), 1–13. https://doi.org/10.1080/01496395.2019.163562
  62. S.R. Kuchekar, S. Bhumkar, H. Aher, S.-H. Han. Solvent Extraction, spectrophotometric determination of Iridium (III) using p-methylpheylthiourea as a chelating agent: Sequential Separation of Iridium (III), Ruthenium (III) and Platinum (IV), Journal of Materials and Environmental Sciences, 2019, 10(12), 1200-1213.
  63. S.R. Kuchekar, S.D. Bhumkar, H.R. Aher. Extractive Spectrophotometric Determination of Osmium (VIII) using pmethylphenylthiourea as a Chromogenic reagent: Mutual separation of Palladium, Osmium and Platinum, Journal of Materials and Environtal Science, 2019, 10(4), 316-327.
  64. S. R. Kuchekar, S. D. Bhumkar, H. R. Aher, S.H. Han. Separation of Platinum(IV) from Pharmaceuticals using p-methylphenyl Thiourea by Solvent Extraction: Separation from Palladium(II), Nickel (II), Analytical Chemistry Letters, 2019, 9(6), 775-788. https://doi.org/10.1080/22297928.2020.1712236
  65. S. R. Kuchekar, S.D. Bhumkar, H. R. Aher, B. H. Zaware, P. Ramasami. Solvent Extraction and Spectrophotometric Determination of Palladium(II) Using p- methylphenyl Thiourea as a Complexing Agent, International Journal of Chemical and Molecular Engineering, 2019, 13(10).
  66. J.S. Casas, M.S. Garcı́a-Tasende, J. Sordo. Main group metal complexes of semicarbazonesandthiosemicarbazones. A structural review. Coordination Chemistry Reviews, 2000, 209(1), 197-261. https://doi.org/10.1016/S0010-8545(00)00363-5
  67. .H. Ajudiya, M.C. Shah. Thiosemicarbazones are Good Spectrophotometric Reagent for Transition Metal Determination: a Review, YMER, 2022, 152-175.
  68. S. Mukherjee. Role of Thiosemicarbazide and its Derivatives as N, S Donor Ligand. The Beats of Natural Sciences, 2016, 3, 1-10.
  69. I.D. Kostas, B.R. Steele. Thiosemicarbazone Complexes of Transition Metals as Catalysts for Cross-Coupling Reactions. Catalysts, 2020, 10(10), 1107. https://doi.org/10.3390/catal10101107
  70. J. Karthikeyan, P. Parameshwara, A. N. Shetty. Analytical properties of p-[N, N-bis (2-chloroethyl)amino]benzaldehydethiosemicarbazone: spectrophotometric determination of palladium(II) in alloys, catalysts, and complexes. Environmental Monitoring and Assessment, 2010, 173(1-4), 569–577. http://dx.doi.org/10.1007/s10661-010-1405-8
  71. P.P. Naik, J. Karthikeyan, A. N. Shetty. Spectrophotometric determination of platinum (IV) in alloys, complexes, environmental, and pharmaceutical samples using 4-[N, N-(diethyl)amino] benzaldehyde thiosemicarbazone, Enviromental Monitoring and Assessment, 2010, 171(1-4), 639-649. https://doi.org/s10661-010-1308-8
  72. F. Salinas, A. Espinosa-Mansilla, L. Lὁpez-Martίnez, P.L. Lὁpez-de-Alba. Selective Extraction-Spectrophotometric Determination of Microamounts of Palladium in Catalysts, Chemica Analityczna, 2001, 46(2), 239-248.
  73. B.K. Reddy, K.J. Reddy, J.R. Kumar, A.K. Kumar, A.V. Reddy. Highly sensitive Extractive Spectrophotometric Determination of Palladium (II) in Synthetic Mixtures and Hydrogenation Catalysts Using Benzildithiosemicarbazone, Analytical Sciences, 2004, 20, 925-930.
  74. A.R. Somala. Synthesis of novel analytical reagent 2, 6-diacetyl-pyri-dine bis-4-phenyl-3-thiosemicarbazone and its analytical applications: Determination of Pd (II) in Spiked samples, Journal of Chemical and Pharmaceutical Research, 2015, 7(8), 146-154.
  75. V.D. Barhate, P. Madan, A. Kumar, S. Gupta, D. B. Mandhare. Extractive spectrophotometric determination of palladium (II) with isonitroso-p- thiosemicarbazone (HINATS), Oriental Journal of Chemistry, 2009, 25(3), 731-733.
  76. D.M. Renuka , M. O. Reddy. Non-Extractive Spectrophotometric Determination of Palladium in Biological Samples Using Pyridoxal Thiosemicarbazone (PTSC), International Journal of Advanced Engineering, Management and Science, 2017, 3(4). https://dx.doi.org/10.24001/ijaems.3.4.19
  77. K.J. Reddy, J. R. Kumar, C. Ramachandraiah , S. A. Reddy, A. V. Reddy. Selective and sensitive extractive spectrophotometric determination of micro amounts of palladium (II) in spiked samples: using a new reagent N-ethyl-3-carbazolecarbaxaledehydethiosemicarbazone, Environtal Monitoring Assessment, 2008, 136, 337–346.
  78. P. Madhusudhan, M. R. Reddy, J. Renuka. Spectrophotometric Determination of Ruthenium (III) with complexing with a new & freshly prepared chromogenic organic reagent 3,4- dihydroxy-5-methoxybenzaldehyde thiosemicarbazone, International Journal of Advanced Research in Engineering and Technology, 2021, 12(2), 568-573. https://doi.org/10.34218/IJARET.12.2.2021.054
  79. P.P. Sinha, S.K.S. Tomer, A. Asthana. Spectrophotometric Determination of Ruthenium present in traces. International Journal of Research in Engineering and Technology, 2015, 1-3.
  80. P.P. Sinha, S.K.S. Tomer. Spectrophotometric Determination of Rhodium using Phenanthraquinone monothiosemicarbazone, International Journal of Technical Research and Applications, 2017, 42, 05-06.
  81. P.P. Sinha, A. Mishra, S.K.S. Tomar. Spectrophotometric Determination of Osmium, Global Journal of Engineering Science and Researches, 2019, 61-63.
  82. P. Madan, V. Barhate. Extractive Spectrophotometric Determination of Ruthenium(III) Using 2-(5-Bromo-2-Oxoindolin-3-Ylidene) Hydrazine Carbothioamide as an Analytical reagent, International Journal of Science and Research, 2013, 5(4), 778-781.
  83. M. Parinita, V.D. Barhate. Extractive and spectrophotometric determination of palladium (II) using 2-(5-Bromo-2-Oxoindolin-3-Ylidene) Hydrazine Carbothioamide as an analytical reagent, Journal of Chemical and Pharmaceutical Research, 2015, 7(12), 1113-1116.
  84. P.U. Madan, V.D. Barhate. Extractive Spectrophotometric Determination of Osmium(IV) Using 2-(5-Bromo-2-Oxoindolin-3-Ylidene) Hydrazine Carbothioamide as an Analytical reagent, Journal of Applicable Chemistry, 2016, 5(3), 646-653.
  85. S.S. Borgave, V.D. Barhate. Extractive Spectrophotometric Determination of Rhodium(III) Using 2-(5-Bromo-2-Oxoindolin-3-Ylidene) Hydrazine Carbothioamide as an Analytical reagent,EJPMR, 2016,475-478.
  86. V.D. Barhate, P.U. Madan. Extractive Spectrophotometric Determination of Platinum(IV) Using
  87. -(5-Bromo-2-Oxoindolin-3-Ylidene) Hydrazine Carbothioamide as an Analytical reagent, World Journal of Pharmacy and Pharmaceutical Sciences, 2016, 5(4), 1939-1947. https://doi.org/10.20959/wjpps20164-6543
  88. S.S. Borgave, V.D. Barhate. Extractive Spectrophotometric Determination of Iridium(III) Using 2-(5-Bromo-2-Oxoindolin-3-Ylidene) Hydrazine Carbothioamide as an Analytical reagent, Journal of Chemical and Pharmaceutical Reserach, 2016, 8(5), 584-589.
  89. A.P. Kumar, P.R. Reddy, V.K. Reddy. Direct and Derivative Spectrophotometric determination of Ruthenium (III), International Journal of Chem Tech Research, 2013, 5(4), 1442-1447.
  90. I. srivani, A.P Kumar, P.V. Reddy, K.P.P.R.M. Reddy, V.K. Reddy. Synthesis of 2-hydroxy-3-methoxy Benzaldehyde thiosemicarbazone (HMBATSC) and its application for direct and second derivative spectrophotometric determination of palladium(II), Annali Di Chimica, 2007, 97(11-12), 1237-1245. https://doi.org/10.1002/adic.200790109
  91. P. Shetty, A.N. Shetty, R.V. Gadag. Spectrophotometric determination of palladium (II) using piperonal thiosemicarbazone, Indian Journal of Chemical Technology, 2003, 10, 287-290.
  92. P. Shetty, A.N. Shetty, R.V. Gadag. Rapid spectrophotometric determination of platinum (IV) using piperonal thiosemicarbazone, Indian Journal of Chemistry, 2002, 41A, 988-990.
  93. L.S. Sarma, J.R. Kumar, K.J. Reddy, A.K. Kumar, A.V. Reddy. A Rapid and Sensitive Extractive Spectrophotometric determination of Palladium(II) in Synthetic Mixtures and Hydrogenation Catalysts Using Pyridoxal -4-phenyl-3-thiosemicarbazone, Analytical Sciences, 2002, 18(11), 1257-1261. https://10.2116/analsci.18.1257.
  94. FM. Khokhar, T.M. Jahangir, M.Y. Khuhawar, M.S. Qureshi, M.I. Khaskheli, L.A. Khan Khokhar. High Performance liquid chromatographic separation of platinum(II), gold(III), vanadium(IV), vanadium(V), molybdenum(VI) and analysis of cisplatin as platinum(II) in cis-plasol injection, urine, and blood serum using pyridoxal-4-phenyl-3-thiosemicarbazoneas complexing agent, Journal of Liquid Chromatography & Related Technologies, 2019, 43(1-2), 29-36. https://doi.org/10.1080/10826076.2019.1645029
  95. E. Corey, D. Enders. Applications of N,N-dimethylhydrazones to synthesis. Use in efficient, positional and stereochemically selective C=C and formation, oxidative hydrolysis of carbonyl compounds. Tetrahedron Letters, 1976, 17(1), 3-6. https://doi.org/10.1016/S0040-4039%2800%2971307-4
  96. A.J.M. Xavier, M. Thakur, J.M. Marie. Synthesis and spectral characterization of hydrazine based 14-membered octaaza macrocyclic Ni (II) complexes. Journal of Chemical and Pharmaceutical Research, 2012, 4)2), 986-90.
  97. R.E.D. Clark. The colorimetric determination of tiny means of Toluene-3:4-dithiol (Dithiol), Analyst, 1937, 661. https://doi.org/10.1039/AN9376200661
  98. C. Jayabalakrishnane, K. Natarajan. Synthesis, characterization and biological activities off Ruthenium (II) carbonyl complexes containing bifunctional tridentate Schiff bases. Synthesis and Reactivty in Inorganic and Metal organic chemistry, 2001, 31(6), 983-995. http://doi.org/10.1081/SIM-100105255
  99. M Katyal. Analytical applications of hydrazones. Talanta, 1975, 22(2), 151-166. https://doi.org/10.1016/0039-9140(75)80161-5
  100. R.B.Singh, P.Jain, R.P.Singh. Hydrazones as analytical Reagents: A Review Talanta, 1982, 29(2), 77-84. https://doi.org/10.1016/0039-9140(82)80024-6
  101. M. Challa, T.S. Reddy. Simple and simultaneous spectrophotometric determination of Pd(II) in alloys using hydrazone compounds, African Journal of Pure and Applied Chemistry, 2011, 5(13), 442-447. https://doi.org/10.5897/AJPAC.9000126
  102. M.M. Patel, M.C. Shah. Review on Spectrophotometric Method for formation of Metal Complexes of Hydrazone Derivatives, YMER, 2022, 2942-2964.
  103. G.C. Reddy, N. Devanna and K.B. Chandrasekhar, “Sensitive Spectrophotometric Determination of Ruthenium (III) using Diacetyl Monoxime Isonicotinoyl Hydrazone (DMIH)”, Asian Journal of Research in Chemistry, 2011, 4(6), 997-1000.
  104. M.R. Rao, K.B. Chandrasekhar. Sensitive Derivative Spectrophotometric Determination of Palladium (II) using 3,5-Dimethoxy-4-hydroxybenzaldehydeisonicotinoylhydrazone in the presence of Micellar medium , Der Pharma Chemica, 2011,3(2), 358-369.
  105. M. Gangadharappa, P. R. Reddy. Direct and derivative spectrophotometric determination of palladium with 2-aminoacetophenone isonicotinoyl hydrazone (2-AAINH), Journal of Indian Chemical Society, 2006, 83, 1130-1134.
  106. K.A. Bai, K.B. Chandrasekhar. Spectrophotometric Determination of Osmium (VIII) using 2,4-Dimethoxy Benzaldehyde IsonicotinoylHydrazone (DMBIH) in presence of Surfactant Triton X-100, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2011, 2(3), 174-182.
  107. M. Swetha, P.R. Reddy, V.K. Reddy. Direct, derivative spectrophotometric determination of micro amounts of palladium (II) by 5-bromo-salicylaldehyde isonocotinoyl hydrazine (5-BrSAINH), Advances in Applied Science Research, 2013, 4(2), 298-304.
  108. G. B. Pethe, S. G. Bhadange, M. D. Joshi, A. S. Aswar. Extractive Spectrophotometric Determination of Palladium (ii) with 2-hydroxy-5-methylacetopheneoneisonicotinoylhydrazone (HMAINH), Advances in Applied Science Research, 2010, 1(2), 58-64.
  109. S. L. Narayana, C. Ramachandraiah, A.V. Reddy, D. Lee, J. Shim. Determination of traces of Pd(II) spiked samples by using 3,4- Dihydroxybenzaldehydeisonicotinoylhydrazone as a Chelating Agent with UV Visible Spectrophotometer, E-Journal of Chemistry, 2011, 8(1), 217-225.
  110. V.K. Kumar, M.R. Rao, K.B. Chandrasekhar, N. Devanna. Derivative Spectrophotometric Determination of Ruthenium (III) using cinnamaldehydeisonicotinoylhydrazone reagent (CINH), Asian Journal of Chemistry, 2008, 20(3), 2197-2204.
  111. S.R.K. Reddy, M.R. Rao, N. Devanna, K.B. Chandrasekhar.Determination of Palladium (II) Using Cinnamaldehyde Isonicotinoyl Hydrazone by Derivative Spectrophotometric Technique, Journal of Applicable Chemistry, 2016, 5(2), 375-383.
  112. M.R. Rao, K.B. Chandrasekhar. Sensitive Derivative Spectrophotometric Determination of Palladium (II) using 3,5-Dimethoxy-4-hydroxybenzaldehydeisonicotinoylhydrazone in presence of Micellar medium, Der Pharma Chemica, 2011, 3(2), 358-369
  113. M.R Rao, K.B. Chandrasekhar, N. Devanna. Determination of Ruthenium (III) in the presence of micellar medium by derivative spectrophotometric technique, Journal of Chemical Technology and Metallurgy Alloys 5, 2012, 5(1/2), 42-49. http://dx.doi.org/10.30970/cma5.0207
  114. D.G. Krishna, N. Devanna, K.B. Chadrasekhar. Direct and Derivative Spectrophotometric determination of Palladium (II) in the presence of Micellar Medium in the Hydrogenation Catalyst Samples, synthetic alloys samples and in water samples using 4-hydroxy-3,5-dimethoxy Benzaldehyde 4-Hydroxy Benzoylhydrazone (HDMBHBH), International Journal of Applied Biology and Pharmaceutical Technology, 2010, 1(2), 643-659.
  115. D.G. Krishna, G.V. K. Mohan. Synthesis, Structural Characterization and Spectrophotometric determination of ruthenium(VI) in Presence of Micellar Medium using 4-hydroxy-3,5-dimethoxy Benzaldehyde 4-Hydroxy Benzoylhydrazone, Engineering, 2013, 245-246. https://dx.doi.org/10.36106/ijar
  116. D.G. Krishna, N. Devanna, K.B. Chadrasekhar. Comparative Study of Palladium(II), using 4-hydroxy 3,5-dimethoxy Benzaldehyde 4-hydroxyl benzoyl hydrazine and 4-hydroxy benzoylhydrazone in the presence of micellar medium by spectrophotometry, International Journal of Pharma Sciences and Research, 2010, 1(18), 301-311.
  117. P.G. Chowdary, V.S. Basha. Synthesis of 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNHBH) and its applications in direct and derivative spectrophotometric determination of palladium (II), World Journal of Pharmaceutical Research, 2015, 4(5), 1168-1180.
  118. A. Kumar, S.Gupta, V.D. Barhate. Extraction and spectrophotometric determination of Palladium (II) with isonitroso p-methyl acetphenone phenyl hydrazone (HIMAPH), Oriental Journal of Chemistry, 2010, 26(3), 1085-1089.
  119. D.B. Mandhare, V.D. Barhate. Extractive spectrophotometric determination of rhodium (III) with isonitroso p-methyl acetophenonephenyl hydrazine, Oriental Journal of Chemistry, 2009, 25(4), 1125-1128.
  120. D.B. Mandhare, V.D. Barhate. Extractive spectrophotometric determination of ruthenium (III) with isonitroso p-methyl acetophenone phenyl hydrazine, Acta Ciencia Indica, 2009, 35(3), 325-329.
  121. S.B. Zanje, A.N. Kokare, V.J. Suryavanshi, D.P. Waghmode, S.S. Joshi, M.A. Anuse. Development of a reliable analytical method for the precise extractive spectrophotometric determination of osmium (VIII) with 2-nitrobenzaldehydethiocarbohydrazone: Analysis of alloys and real sample. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 169, 223-229. https://doi.org/10.1016/j.saa.2016.06.051
  122. S.B. Zanje,V.J. Suryavanshi, A.N. Kokare, A.A. Ghare, G.S. Kamble, P.N. Kamble, M.A. Anuse. 2-Nitrobenzaldehyde Thiocarbohydrazone Assisted Precise Extraction Spectrophotometric Method for the Determination of Ruthenium (III) in Alloy and Catalysts. Journal of Analytical Chemistry, 2018, 73, 438–451. https://doi.org/10.1134/S1061934818050131
  123. S.B. Zanje, A.N. Kokare, V.J. Suryavanshi. Extractive Spectrophotometric Determination of Platinum in Cisplatin Injection, alloys and Catalysts Assisted by 2-nitrobenzaldehydethiocarbohydrazone, Journal of Trace Analysis in Food and Drugs, 2016, 1-24. http://dx.doi.org/10.7726/jtafd.2016.1001
  124. S. S. Sawant. Sequential Separation and Spectrophotometric Determination of Osmium and Platinum with 5-Chloro-2-hydroxythiobenzhydrazide. Analytical Sciences, 2009, 25(6), 813–818. https://doi.org/doi:10.2116/analsci.25.813
  125. S.S. Shakuntala. Extractive Separation and Spectrophotometric Determination of Traces of Ruthenium from Mixtures Containing Excess Platinum Group Metals, Analytical Letters, 2009, 42, 1678–1692. https://doi.org/10.1080/00032710902993803
  126. R. Makhijani. Development of Extractive Spectrophotometric determination of Rhodium (III) using Schiffs Base as An analytical Reagent, International Journal of Advanced Research in Science, Communication and Technology, 2021,6(2), 1101-1105. https://doi.org/10.48175/IJARSCT-1535
  127. R. Makhijani. Development of Extractive Spectrophotometric determination of Iridium (III) using Schiffs Base as An Analytical Reagent, Journal of Emerging Technologies and Innovative Research, 2021, 8(6),d643-d647.
  128. R.M.Makhijai, V.D. Barhate. Extractive Spectrophotometric Determination of Ruthenium (III) with [N-(o-methoxy benzaldehyde)-2-Amino Phenol], International Journal of ChemTech Research, 2013, 5(4), 1578-1584.
  129. P. Khande, M. Thakur, M.K. Deb. Extraction of chloroplatinate(II) -2-[5-bromo-2-pyridylazo)]-5-diethylaminophenol-(TX-100)-N-hydroxy-N,N΄-diphenylbenzamidine complex, Journal of Scientific and Industrial Research, 2005, 64, 138-143.
  130. A.Z. Abu Zuhri, B.F. Shraydeh, J. Shalabi. Selective Spectrophotometric determination of Palladium (II) with 2-(5-Bromo-2-Pyridylazo)-5-(diethylamino)-phenol. Analytical Letters, 2006, 19 (1-2), 99-112. https://doi.org/10.1080/00032718608066244.
  131. P. Ratre, D. Kumar. Spectrophotometric Determination of Complexation of Ruthenium (IV) with 2-[(5-Bromo-2-Pyridylazo)]-5-diethylaminophenol and N-hydroxy-N,N΄-Diphenylbenzamidine, International Journal of ChemTech Research, 2014, 6(1), 236-247.
  132. R. Agnihotri, S. Akhtar, A. Singh, N. Agnihotri. 4H-1-Benzoprans as Analytical Reagents- A Review, Journal of Chemistry, 2016, 5(4), 22-31.
  133. E. Pierpaoli, V. Viola, F. Pilolli, M. Piroddi, F. Galli, M. Provinciali. γ-and δ-tocotrienols exert a more potent anticancer effect than α-tocopheryl succinate on breast cancer cell lines irrespective of HER-2/neu expression. Life Sciences, 2010, 86(17-18), 668-675. https://doi.org/10.1016/j.lfs.2010.02.018
  134. E. Jr. Middleton, C. Kandaswami, T.C. Theoharides. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 2000, 52(4), 673-751.
  135. H. Lee, K. Lee, J.-K. Jung, J. Cho, E.A. Theodorakis. Synthesis and evaluation of 6-hydroxy-7-methoxy-4-chromanone- and chroman-2- carboxamides as antioxidants, Bioorganic and Medicinal Chemistry Letters, 2005, 15(11), 2745-8. https://doi.org/10.1016/j.bmcl.2005.03.118
  136. L. Costantino, G. Rastelli, M.C. Gamberini, J.A. Vinson, P. Bose, A. Iannone, M. Staffieri, L. Antolini, A. D. Corso, U. Mura, A. Albasini. 1-benzopyran-4-one antioxidants as aldose reductase inhibitors. Journal of Medicinal Chemistry, 1999, 42(11),1881-93. https://doi.org/10.1021/jm980441h
  137. G. A. Kraus, J. Mengwasser, W. Maury, C. Oh. Synthesis of chroman aldehydes that inhibit HIV, Bioorganic and Medicinal Chemistry Letters, 2011, 21(5), 1399-401. https://doi.org/10.1016/j.bmcl.2011.01.031
  138. A.K. Tiwari, M.V. Singh. New Insights into the origin and Therapeutic implications of Benzopyran and their derivatives: A review, Biological and Medicinal Chemistry, 2023. https://doi.org/10.26434/chemrxiv-2023-q2641
  139. M. Mohmad, N. Agnihotri, V.Kumar,M. Azam, R. Kamal, A. Kumar, U. Sharma, S. Javed, S. Murthu, K. Min. Preparation of a Pt(II)-3-Hydroxy-2-tolyl-4H-chromen-4-one Complex Having Antimicrobial , Anticancerous, and Radical Scavenging Activities with Related Computational Studies, ACS Omega, 2023, 8(35), 31648-31660. https://doi.org/10.1021/acsomega.3c01316
  140. K. Devi, N. Agnihotri, G. Kumar. Chemistry of Iridium(lll)-3-hydroxy-2-tolyl-4H-chromen-4-one: The spectrophotometric analysis, radical scavenging activity and computational studies, Indian Journal of natural Science, 2024, 15, 73193-73205
  141. M. Mohmad, N. Agnihotri, V. Kumar, U. Sharma. A novel analytical, bioanalytical and theoretical approach to the platinum(II)-3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one complex, Results in Chemistry, 2023, 5, 100767. https://doi.org/10.1016/j.rechem.2023.100767
  142. M. Mohmad, N. Agnihotri. Bioanalytical and Theoretical Studies of the spectrophotometrically Investigated Iridium(III)-3-Hydroxy-2-(4-Methoxyphenyl)-4H-Chromen-4-one Complex, Iranian Journal of Chemistry and Chemical Engineering, 2023, 42(10), 3383-3398.
  143. N. Agnihotri, Mohini, S.I.Al Resayes, S.Javed, M.Azam,S.Kumar,S. Muthu,V.Kumar,M.Singh . A Spectrophotometric Determination and the Quantum Chemical Investigation of Pd(II)-3-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-1-benzopyran complex, Bulletin of the Chemical Society of Ethiopia, 2024, 38(3), 591-603. https://doi.org/10.4314/bcse.v38i3.4
  144. N. Kaur, N. Agnihotri, R. Agnihotri.3-Hydroxy-2-[2´-(5´-methylthienyl)]-4-oxo-4H -1-benzopyran for spectrophotometric determination of Tungsten(VI) and Palladium(II), Vietnam Journal of Chemistry, 2019, 57(6), 686-695. https://doi.org/10.1002/vjch.201900069
  145. M. Mohmad, N. Agnihotri, V. Kumar, R. Kumar. Iridium(III)-3-hydroxy-2-(3´-methyl-2´- thienyl)-4-oxo-4H-1-benzopyran complex: The analytical, in-vitro antibacterial and DFT studies, Inorganic Chemistry Communications, 2022, 139(4), 109333. http://dx.doi.org/10.1016/j.inoche.2022.109333
  146. M. Mohmad, N. Agnihotri, V. Kumar, M. Azam, S. M. Wabaidur, R. Kamal, R. Kumar, M. Alam, S. Kaviani. Radical scavenging capacity, antibacterial activity and quantum chemical aspects of the spectrophotometrically investigated iridium (III) complex with benzopyran derivative, Frontiers in Pharmacology, 2022, 13, 945323
  147. N. Kaur, N. Agnihotri, U. Berar. Microdetermination of Palladium(II) using 6-Chloro-3-hydroxy- 7-methyl-2-(2´-thienyl)-4-oxo-4H-1-benzopyran, Asian Journal of Chemistry, 2020, 32(7), 1597-1602. https://doi. org/10.14233/ajchem.2020.22610
  148. N. kaur, R. Agnihotri, N. Agnihotri. Studies on the liquid phase extraction and spectrophotometric
  149. determination of 6-chloro-3-hydroxy-7-methyl-2-(2’-furyl) -4H-chromen-4-one complex of palladium(II),
  150. Rasayan Journal of Chemistry, 2022, 15(1), 262-268. http://dx.doi.org/10.31788/RJC.2022.1516371
  151. H. A. Shindy. Basics in colors, dyes and pigments chemistry: A review, Chemistry International, 2016,
  152. (1), 29-36. http://dx.doi.org/10.31221/osf.io/y439u.
  153. O.Tymoshuk, L. Oleksiv, O. Fedyshyn, P. Rydchuk, V. Matiychuk, T. Chaban. A New Reagent for
  154. Spectrophotometric Determination of Ir (IV): 5-[2-(4-hydroxyphenyl)hydrazineylidene]-4-
  155. iminothiazolidine-2-one (HPIT), Acta Chimica Slovenica, 2020, 67(3), 970-976.
  156. http://dx.doi.org/10.17344/acsi.2020.6046
  157. Yi, Yang. Catalytic kinetic spectrophotometric determination of trace iridiumIV in potassium periodate-
  158. xylenecyanol FF system, Chemistry, 2008.
  159. D. Revanasiddappa, K.T. Kumar. A highly sensitive spectrophotometric determination of platinum(IV)
  160. using leuco xylene cyanol FF, Analytical and Bioanalytical Chemistry, 2003, 375, 319–323.
  161. https://doi.org/10.1007/s00216-002-1665-4
  162. M. Rydchuk, T.Vrublevska, O.Korkuna, M.Volchak. Application of orange G as a complexing reagent in
  163. spectrophotometric determination of osmium (IV), Chemia Analityczna, 2009 , 54(5), 1051-1063.
  164. S.H. Gaikwad, D.S. Bhange, M. Anuse. Extractive spectrophotometric determination of micro amounts of
  165. ruthenium(III) using 1,3-bis(hydroxymethyl)benzimidazole-2-thione:Analysis of fissium alloy, Revue
  166. Roumaine de Chimie, 2004, 49(7), 631–639.
  167. S.H. Gaikwad, U.B. Barache,T.N. Lokhande, M.A. Anuse. Experimentally validated extractive
  168. spectrophotometric determination method of osmium(VIII) from environmental samples: sequential
  169. separation of osmium(VIII), rhodium(III) and ruthenium(III), International Journal of Environmental
  170. Analytical Chemistry, 2020, 102(17), 5179-5199. https://doi.org/10.1080/03067319.2020.1792893
  171. S.H. Gaikwad, M.A. Anuse. A sensitive extractive spectrophotometric method for the determination of
  172. palladium (II) with 1, 3-bis (hydroxymethyl) bezimidazole-2-thione in catalysts, Indian Journal of
  173. Chemical Technology, 2003, 10(5), 447-453.
  174. A.B. Shaik, U.B. Barache, B.T. Khogare, R. Goswami, B.N. Kokare, P.P. Wadgaonkar, S.H. Gaikwad.
  175. Highly reproducible, simple and selective analytical method for extractive UV-visible spectrophotometric
  176. determination of ruthenium(III): Analysis of catalyst, fissium alloy and sequential separation,
  177. Spectrochimica Acta A, 2020, 243, 118814. http://doi.org/10.1016/j.saa.2020.118814
  178. A. B. Shaikh, U. B. Barache, T. N. Lokhande, G. S. Kamble , M. A. Anuse, S. H. Gaikwad. Expeditious
  179. Extraction and Spectrophotometric Determination of Palladium (II) from catalysts and alloy samples using
  180. new chromogenic reagent, Rasayan Journal of Chemistry, 2017, 10(3), 967-980.
  181. http://dx.doi.org/10.7324/RJC.2017.1031804
  182. A.S. Amin, I.A. Zaafarany. Spectrophotometric determination of iridium after complexation and membrane
  183. filtration, Analytical Chemistry Research, 2015, 3, 77-81. https://doi.org/10.1016/j.ancr.2014.10.001

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP