JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 70 No 3 (2025): Journal of The Chilean Chemical Society
Reviews

PRECISION AND PROGRESS: ADVANCES IN ANALYTICAL CHEMISTRY FOR BIOANALYSIS

Satyanarayan Pattnaik
Sanskriti University, Mathura
Published November 10, 2025
Keywords
  • Analytical chemistry; Bioanalytical instruments; Bioanalysis; Drug development; Good Laboratory Practice; High-performance liquid chromatography.
How to Cite
Panigrahy, S., Swain, K., & Pattnaik, S. (2025). PRECISION AND PROGRESS: ADVANCES IN ANALYTICAL CHEMISTRY FOR BIOANALYSIS. Journal of the Chilean Chemical Society, 70(3), 6371-6379. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/2809

Abstract

Analytical chemistry is pivotal in the progression of bioanalysis, facilitating precise quantification and characterization of biomolecules within intricate biological environments. This chapter offers an outline of the basic principles of analytical chemistry employed in bioanalytical techniques. It covers key topics including sample preparation techniques, separation methods such as chromatography and electrophoresis, detection techniques including mass spectrometry and spectroscopy, and data analysis strategies. In addition, advancements in instrumentation, miniaturization, and automation are discussed, highlighting their impact on improving the sensitivity, selectivity, and throughput of bioanalytical workflows. Overall, this review emphasizes the pivotal role of analytical chemistry in driving innovations and advancements in bioanalysis.

28091.jpg

References

  1. Moein, M. M.; El Beqqali, A.; Abdel-Rehim, M. Bioanalytical Method Development and Validation: Critical Concepts and Strategies. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1043. https://doi.org/10.1016/j.jchromb.2016.09.028.
  2. Giri, P.; Patel, N.; Joshi, V.; Giri, S.; Srinivas, N. R. Incurred Sample Reanalysis in Drug Discovery Bioanalysis. Biomedical Chromatography, 2019, 33 (3). https://doi.org/10.1002/bmc.4430.
  3. Swain, K.; Pattnaik, S.; Yeasmin, N.; Mallick, S. Preclinical Evaluation of Drug in Adhesive Type Ondansetron Loaded Transdermal Therapeutic Systems. Eur J Drug Metab Pharmacokinet, 2011, 36 (4), 237–241. https://doi.org/10.1007/s13318-011-0053.
  4. Veneziano, M. Bioanalysis and Pharmacokinetic Studies. Int J Pharmacokinet, 2021, 5 (1). https://doi.org/10.4155/ipk-2020-0005.
  5. Yadav, Y. C.; Pattnaik, S.; Swain, K. Curcumin Loaded Mesoporous Silica Nanoparticles: Assessment of Bioavailability and Cardioprotective Effect. Drug Dev Ind Pharm, 2019, 45 (12), 1889–1895. https://doi.org/10.1080/03639045.2019.1672717.
  6. Kole, P. L.; Venkatesh, G.; Kotecha, J.; Sheshala, R. Recent Advances in Sample Preparation Techniques for Effective Bioanalytical Methods. Biomedical Chromatography. 2011. https://doi.org/10.1002/bmc.1560.
  7. Suzaei, F. M.; Daryanavard, S. M.; Abdel-Rehim, A.; Bassyouni, F.; Abdel-Rehim, M. Recent Molecularly Imprinted Polymers Applications in Bioanalysis. Chemical Papers. 2023. https://doi.org/10.1007/s11696-022-02488-3.
  8. Drexler, D. M.; McNaney, C. A.; Wang, Y.; Huang, X.; Reily, M. D. The Utility of QNMR to Improve Accuracy and Precision of LC-MS Bioanalysis. J Appl Bioanal, 2018, 4 (1). https://doi.org/10.17145/jab.18.005.
  9. Findlay, J. W. A.; Smith, W. C.; Lee, J. W.; Nordblom, G. D.; Das, I.; Desilva, B. S.; Khan, M. N.; Bowsher, R. R. Validation of Immunoassays for Bioanalysis: A Pharmaceutical Industry Perspective. J Pharm Biomed Anal, 2000, 21 (6). https://doi.org/10.1016/S0731-7085(99)00244-7.
  10. Jiang, D.; Yuan, L. Microflow LC-MS/MS to Improve Sensitivity for Antisense Oligonucleotides Bioanalysis: Critical Role of Sample Cleanness. Bioanalysis, 2022, 14 (21). https://doi.org/10.4155/bio-2022-0201.
  11. Dubey, R.; Bhushan, R. Specificity versus Selectivity: Twin Aims of Aptasensors in Bioanalysis. Bioanalysis. 2018. https://doi.org/10.4155/bio-2018-0188.
  12. Ettre, L. S. Chromatography: The Separation Technique of the 20th Century. Chromatographia. 2000. https://doi.org/10.1007/BF02490689.
  13. Zheng, J.; Huang, C.; Wang, S. Challenging Pharmaceutical Analyses by Gas Chromatography with Vacuum Ultraviolet Detection. J Chromatogr A, 2018, 1567. https://doi.org/10.1016/j.chroma.2018.06.064.
  14. Knol, W. C.; Pirok, B. W. J.; Peters, R. A. H. Detection Challenges in Quantitative Polymer Analysis by Liquid Chromatography. Journal of Separation Science. 2021. https://doi.org/10.1002/jssc.202000768.
  15. Bhati, C.; Minocha, N.; Purohit, D.; Kumar, S.; Makhija, M.; Saini, S.; Kaushik, D.; Pandey, P. High Performance Liquid Chromatography: Recent Patents and Advancement. Biomedical and Pharmacology Journal, 2022, 15 (2). https://doi.org/10.13005/bpj/2411.
  16. Ramon, M. A.; Fanali, C.; Della Posta, S.; D’Orazio, G.; Fanali, S. Nano-Liquid Chromatography. In Liquid Chromatography: Fundamentals and Instrumentation: Volume 1, Third Edition; 2023; Vol. 1. https://doi.org/10.1016/B978-0-323-99968-7.00028-X.
  17. -, N. T. S.; -, V. D. S. Ultra Performance Liquid Chromatography (UPLC) - A Review. International Journal For Multidisciplinary Research, 2023, 5 (2). https://doi.org/10.36948/ijfmr.2023.v05i02.1868.
  18. Choudhari, S. M.; Ananthanarayan, L.; Singhal, R. S. Purification of Lycopene by Reverse Phase Chromatography. Food Bioproc Tech, 2009, 2 (4). https://doi.org/10.1007/s11947-008-0054-1.
  19. Bihan, D. G.; Rydzak, T.; Wyss, M.; Pittman, K.; McCoy, K. D.; Lewis, I. A. Method for Absolute Quantification of Short Chain Fatty Acids via Reverse Phase Chromatography Mass Spectrometry. PLoS One, 2022, 17 (4 April). https://doi.org/10.1371/journal.pone.0267093.
  20. Molnar, I.; Horvath, C. Reverse Phase Chromatography of Polar Biological Substances: Separation of Catechol Compounds by High Performance Liquid Chromatography. Clin Chem, 1976, 22 (9). https://doi.org/10.1093/clinchem/22.9.1497.
  21. Gaborieau, M.; Castignolles, P. Size-Exclusion Chromatography (SEC) of Branched Polymers and Polysaccharides. Anal Bioanal Chem, 2011, 399 (4). https://doi.org/10.1007/s00216-010-4221-7.
  22. Niezen, L. E.; Kruijswijk, J. D.; van Henten, G. B.; Pirok, B. W. J.; Staal, B. B. P.; Radke, W.; Philipsen, H. J. A.; Somsen, G. W.; Schoenmakers, P. J. Principles and Potential of Solvent Gradient Size-Exclusion Chromatography for Polymer Analysis. Anal Chim Acta, 2023, 1253. https://doi.org/10.1016/j.aca.2023.341041.
  23. Hong, P.; Koza, S.; Bouvier, E. S. P. A Review Size-Exclusion Chromatography for the Analysis of Protein Biotherapeutics and Their Aggregates. Journal of Liquid Chromatography and Related Technologies. 2012. https://doi.org/10.1080/10826076.2012.743724.
  24. Santini, F.; Chopra, I. J.; Solomon, D. H.; Chua Teco, G. N. Evidence That the Human Placental 5-Monodeiodinase Is a Phospholipid-Requiring Enzyme. Journal of Clinical Endocrinology and Metabolism, 1992, 74 (6). https://doi.org/10.1210/jcem.74.6.1592882.
  25. Coughtrie, M. W. H.; Burchell, B.; Bend, J. R. Purification and Properties of Rat Kidney UDP-Glucuronosyltransferase. Biochem Pharmacol, 1987, 36 (2). https://doi.org/10.1016/0006-2952(87)90696-4.
  26. Rodriguez, E. L.; Poddar, S.; Iftekhar, S.; Suh, K.; Woolfork, A. G.; Ovbude, S.; Pekarek, A.; Walters, M.; Lott, S.; Hage, D. S. Affinity Chromatography: A Review of Trends and Developments over the Past 50 Years. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2020. https://doi.org/10.1016/j.jchromb.2020.122332.
  27. Hage, D. S.; Anguizola, J. A.; Bi, C.; Li, R.; Matsuda, R.; Papastavros, E.; Pfaunmiller, E.; Vargas, J.; Zheng, X. Pharmaceutical and Biomedical Applications of Affinity Chromatography: Recent Trends and Developments. Journal of Pharmaceutical and Biomedical Analysis. 2012. https://doi.org/10.1016/j.jpba.2012.01.004.
  28. Hubbard, M. A.; Luyet, C.; Kumar, P.; Elvati, P.; VanEpps, J. S.; Violi, A.; Kotov, N. A. Chiral Chromatography and Surface Chirality of Carbon Nanoparticles. Chirality, 2022, 34 (12). https://doi.org/10.1002/chir.23507.
  29. Asnin, L. D.; Stepanova, M. V. Van’t Hoff Analysis in Chiral Chromatography. Journal of Separation Science. 2018. https://doi.org/10.1002/jssc.201701264.
  30. Pirok, B. W. J.; Gargano, A. F. G.; Schoenmakers, P. J. Optimizing Separations in Online Comprehensive Two-Dimensional Liquid Chromatography. Journal of Separation Science. 2018. https://doi.org/10.1002/jssc.201700863.
  31. Kolomnikov, I. G.; Efremov, A. M.; Tikhomirova, T. I.; Sorokina, N. M.; Zolotov, Y. A. Early Stages in the History of Gas Chromatography. J Chromatogr A, 2018, 1537. https://doi.org/10.1016/j.chroma.2018.01.006.
  32. Frick, A. A.; Chidlow, G.; Lewis, S. W.; van Bronswijk, W. Investigations into the Initial Composition of Latent Fingermark Lipids by Gas Chromatography-Mass Spectrometry. Forensic Sci Int, 2015, 254. https://doi.org/10.1016/j.forsciint.2015.06.032.
  33. Zeki, Ö. C.; Eylem, C. C.; Reçber, T.; Kır, S.; Nemutlu, E. Integration of GC–MS and LC–MS for Untargeted Metabolomics Profiling. Journal of Pharmaceutical and Biomedical Analysis. 2020. https://doi.org/10.1016/j.jpba.2020.113509.
  34. Lach, S.; Jurczak, P.; Karska, N.; Kubiś, A.; Szymańska, A.; Rodziewicz-Motowidło, S. Spectroscopic Methods Used in Implant Material Studies. Molecules. 2020. https://doi.org/10.3390/molecules25030579.
  35. Mansour, F. R.; Abdallah, I. A.; Bedair, A.; Hamed, M. Analytical Methods for the Determination of Quercetin and Quercetin Glycosides in Pharmaceuticals and Biological Samples. Crit Rev Anal Chem, 2023. https://doi.org/10.1080/10408347.2023.2269421.
  36. Panda, D. S.; Alruwaili, N. K.; Pattnaik, S.; Swain, K. Ibuprofen Loaded Electrospun Polymeric Nanofibers: A Strategy to Improve Oral Absorption. Acta Chim Slov, 2022, 69 (2), 483–488. https://doi.org/10.17344/ACSI.2022.7370.
  37. Mallick, S.; Pattnaik, S.; Swain, K.; De, P. K.; Mondal, A.; Ghoshal, G.; Saha, A. Interaction Characteristics and Thermodynamic Behaviour of Gatifloxacin by Aluminium Hydroxide. Drug Dev Ind Pharm, 2007, 33 (5), 535–541. https://doi.org/10.1080/03639040601050130.
  38. Mallick, S.; Pattnaik, S.; Swain, K.; De, P. K.; Saha, A.; Mazumdar, P.; Ghoshal, G. Physicochemical Characterization of Interaction of Ibuprofen by Solid-State Milling with Aluminum Hydroxide. Drug Dev Ind Pharm, 2008, 34 (7), 726–734. https://doi.org/10.1080/03639040801901868.
  39. Ducrocq, M.; Morel, M. H.; Anton, M.; Micard, V.; Guyot, S.; Beaumal, V.; Solé-Jamault, V.; Boire, A. Biochemical and Physical–Chemical Characterisation of Leaf Proteins Extracted from Cichorium Endivia Leaves. Food Chem, 2022, 381. https://doi.org/10.1016/j.foodchem.2022.132254.
  40. Hota, S. S.; Pattnaik, S.; Mallick, S. Formulation and Evaluation of Multidose Propofol Nanoemulsion Using Statistically Designed Experiments. Acta Chim Slov, 2020, 67 (1), 179–188. https://doi.org/10.17344/acsi.2019.5311.
  41. Pattnaik, S.; Swain, K.; Rao, J. V.; Varun, T.; Prusty, K. B.; Subudhi, S. K. Aceclofenac Nanocrystals for Improved Dissolution: Influence of Polymeric Stabilizers. RSC Adv, 2015, 5 (112), 91960–91965. https://doi.org/10.1039/c5ra20411a.
  42. Pattnaik, S.; Swain, K.; Manaswini, P.; Divyavani, E.; Rao, J. V.; Talla, V.; Subudhi, S. K. Fabrication of Aceclofenac Nanocrystals for Improved Dissolution: Process Optimization and Physicochemical Characterization. J Drug Deliv Sci Technol, 2015, 29, 199–209. https://doi.org/10.1016/j.jddst.2015.07.021.
  43. Mousa, M. A. A.; Wang, Y.; Antora, S. A.; Al-qurashi, A. D.; Ibrahim, O. H. M.; He, H. J.; Liu, S.; Kamruzzaman, M. An Overview of Recent Advances and Applications of FT-IR Spectroscopy for Quality, Authenticity, and Adulteration Detection in Edible Oils. Critical Reviews in Food Science and Nutrition. 2022. https://doi.org/10.1080/10408398.2021.1922872.
  44. Coelho, S. C.; Rangel, M.; Pereira, M. C.; Coelho, M. A. N.; Ivanova, G. Structural Characterization of Functionalized Gold Nanoparticles for Drug Delivery in Cancer Therapy: A NMR Based Approach. Physical Chemistry Chemical Physics, 2015, 17 (29). https://doi.org/10.1039/c5cp02717a.
  45. Barskiy, D. A.; Put, P.; Pustelny, S.; Budker, D.; Druga, E.; Sjolander, T. F.; Pines, A. Zero- To Ultralow-Field Nmr Spectroscopy of Small Biomolecules. Anal Chem, 2021, 93 (6). https://doi.org/10.1021/acs.analchem.0c04738.
  46. Klukowski, P.; Riek, R.; Güntert, P. Rapid Protein Assignments and Structures from Raw NMR Spectra with the Deep Learning Technique ARTINA. Nat Commun, 2022, 13 (1). https://doi.org/10.1038/s41467-022-33879-5.
  47. Hu, Y.; Cheng, K.; He, L.; Zhang, X.; Jiang, B.; Jiang, L.; Li, C.; Wang, G.; Yang, Y.; Liu, M. NMR-Based Methods for Protein Analysis. Anal Chem, 2021, 93 (4). https://doi.org/10.1021/acs.analchem.0c03830.
  48. Yamaoki, Y.; Nagata, T.; Sakamoto, T.; Katahira, M. Recent Progress of In-Cell NMR of Nucleic Acids in Living Human Cells. Biophysical Reviews. 2020. https://doi.org/10.1007/s12551-020-00664-x.
  49. Atkinson, R. A. NMR of Proteins and Nucleic Acids. Nuclear Magnetic Resonance, 2021, 46. https://doi.org/10.1039/9781788010665-00250.
  50. Reif, B.; Ashbrook, S. E.; Emsley, L.; Hong, M. Solid-State NMR Spectroscopy. Nature Reviews Methods Primers. 2021. https://doi.org/10.1038/s43586-020-00002-1.
  51. d’Avignon, D. A.; Ge, X. In Vivo NMR Investigations of Glyphosate Influences on Plant Metabolism. Journal of Magnetic Resonance, 2018, 292. https://doi.org/10.1016/j.jmr.2018.03.008.
  52. Bastawrous, M.; Jenne, A.; Tabatabaei Anaraki, M.; Simpson, A. J. In-Vivo NMR Spectroscopy: A Powerful and Complimentary Tool for Understanding Environmental Toxicity. Metabolites. 2018. https://doi.org/10.3390/metabo8020035.
  53. Bravo-Veyrat, S.; Hopfgartner, G. Mass Spectrometry Based High-Throughput Bioanalysis of Low Molecular Weight Compounds: Are We Ready to Support Personalized Medicine? Anal Bioanal Chem, 2022, 414 (1), 181. https://doi.org/10.1007/S00216-021-03583-2.
  54. Klont, F.; Hopfgartner, G. Mass Spectrometry Based Approaches and Strategies in Bioanalysis for Qualitative and Quantitative Analysis of Pharmaceutically Relevant Molecules. Drug Discov Today Technol, 2021, 40, 64–68. https://doi.org/10.1016/J.DDTEC.2021.10.004.
  55. Meher, A. K.; Chen, Y.-C. Electrospray Modifications for Advancing Mass Spectrometric Analysis. Mass Spectrometry, 2017, 6 (Spec Iss), S0057–S0057. https://doi.org/10.5702/MASSSPECTROMETRY.S0057.
  56. Armstrong, D. W.; Zhang, L. K.; He, L.; Gross, M. L. Ionic Liquids as Matrixes for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem, 2001, 73 (15), 3679–3686. https://doi.org/10.1021/AC010259F.
  57. Zhu, X.; Xu, T.; Peng, C.; Wu, S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem, 2021, 9. https://doi.org/10.3389/FCHEM.2021.782432.
  58. Nagana Gowda, G. A.; Djukovic, D. Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges. Methods Mol Biol, 2014, 1198, 3. https://doi.org/10.1007/978-1-4939-1258-2_1.
  59. Neagu, A. N.; Jayathirtha, M.; Baxter, E.; Donnelly, M.; Petre, B. A.; Darie, C. C. Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules, 2022, 27 (8). https://doi.org/10.3390/MOLECULES27082411.
  60. Grabarics, M.; Lettow, M.; Kirschbaum, C.; Greis, K.; Manz, C.; Pagel, K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev, 2022, 122 (8), 7840. https://doi.org/10.1021/ACS.CHEMREV.1C00380.
  61. Tian, X.; Permentier, H. P.; Bischoff, R. Chemical Isotope Labeling for Quantitative Proteomics. Mass Spectrom Rev, 2023, 42 (2), 546. https://doi.org/10.1002/MAS.21709.
  62. Wang, Y.; Wondisford, F. E.; Song, C.; Zhang, T.; Su, X. Metabolic Flux Analysis—Linking Isotope Labeling and Metabolic Fluxes. Metabolites, 2020, 10 (11), 1–21. https://doi.org/10.3390/METABO10110447.
  63. Cutsail, G. E.; Debeer, S. Challenges and Opportunities for Applications of Advanced X-Ray Spectroscopy in Catalysis Research. ACS Catalysis. 2022. https://doi.org/10.1021/acscatal.2c01016.
  64. Zimmermann, P.; Peredkov, S.; Abdala, P. M.; DeBeer, S.; Tromp, M.; Müller, C.; van Bokhoven, J. A. Modern X-Ray Spectroscopy: XAS and XES in the Laboratory. Coordination Chemistry Reviews. 2020. https://doi.org/10.1016/j.ccr.2020.213466.
  65. Colboc, H.; Bazin, D.; Reguer, S.; Lucas, I. T.; Moguelet, P.; Amode, R.; Jouanneau, C.; Soria, A.; Chasset, F.; Amsler, E.; et al. Chemical Characterization of Inks in Skin Reactions to Tattoo. J Synchrotron Radiat, 2022, 29. https://doi.org/10.1107/S1600577522008165.
  66. Anné, J.; Canoville, A.; Edwards, N. P.; Schweitzer, M. H.; Zanno, L. E. Independent Evidence for the Preservation of Endogenous Bone Biochemistry in a Specimen of Tyrannosaurus Rex. Biology (Basel), 2023, 12 (2). https://doi.org/10.3390/biology12020264.
  67. Anderson, C. M.; Jain, S. S.; Silber, L.; Chen, K.; Guha, S.; Zhang, W.; McLaughlin, E. C.; Hu, Y.; Tanski, J. M. Synthesis and Characterization of Water-Soluble, Heteronuclear Ruthenium(III)/Ferrocene Complexes and Their Interactions with Biomolecules. J Inorg Biochem, 2015, 145. https://doi.org/10.1016/j.jinorgbio.2014.12.017.
  68. Kopittke, P. M.; Punshon, T.; Paterson, D. J.; Tappero, R. V.; Wang, P.; Pax, F.; van der Ent, A.; Lombi, E. Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants1[OPEN]. Plant Physiology. 2018. https://doi.org/10.1104/PP.18.00759.
  69. Gianoncelli, A.; Bonanni, V.; Gariani, G.; Guzzi, F.; Pascolo, L.; Borghes, R.; Billè, F.; Kourousias, G. Soft X-Ray Microscopy Techniques for Medical and Biological Imaging at Twinmic—Elettra. Applied Sciences (Switzerland), 2021, 11 (16). https://doi.org/10.3390/app11167216.
  70. Withers, P. J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C. K.; Maire, E.; Manley, M.; Du Plessis, A.; Stock, S. R. X-Ray Computed Tomography. Nature Reviews Methods Primers. 2021. https://doi.org/10.1038/s43586-021-00015-4.
  71. Villarraga-Gómez, H.; Herazo, E. L.; Smith, S. T. X-Ray Computed Tomography: From Medical Imaging to Dimensional Metrology. Precision Engineering. 2019. https://doi.org/10.1016/j.precisioneng.2019.06.007.
  72. Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A Comprehensive Review on Raman Spectroscopy Applications. Chemosensors. 2021. https://doi.org/10.3390/chemosensors9090262.
  73. Chan, J.; Fore, S.; Wachsmann-Hogiu, S.; Huser, T. Raman Spectroscopy and Microscopy of Individual Cells and Cellular Components. Laser and Photonics Reviews. 2008. https://doi.org/10.1002/lpor.200810012.
  74. Moura, C. C.; Tare, R. S.; Oreffo, R. O. C.; Mahajan, S. Raman Spectroscopy and Coherent Anti-Stokes Raman Scattering Imaging: Prospective Tools for Monitoring Skeletal Cells and Skeletal Regeneration. Journal of the Royal Society Interface. 2016. https://doi.org/10.1098/rsif.2016.0182.
  75. Whitmore, L.; Wallace, B. A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers, 2008, 89 (5). https://doi.org/10.1002/bip.20853.
  76. Gray, D. M.; Ratliff, R. L.; Vaughan, M. R. Circular Dichroism Spectroscopy of DNA. Methods Enzymol, 1992, 211 (C). https://doi.org/10.1016/0076-6879(92)11021-A.
  77. Corrêa, D.; Ramos, C. The Use of Circular Dichroism Spectroscopy to Study Protein Folding, Form and Function. African J Biochem Res, 2009, 3 (5).
  78. Porra, R. J.; Thompson, W. A.; Kriedemann, P. E. Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of the Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy. BBA - Bioenergetics, 1989, 975 (3). https://doi.org/10.1016/S0005-2728(89)80347-0.
  79. Jeffery, J.; Frank, A. R.; Hockridge, S.; Stosnach, H.; Costelloe, S. J. Method for Measurement of Serum Copper, Zinc and Selenium Using Total Reflection X-Ray Fluorescence Spectroscopy on the PICOFOX Analyser: Validation and Comparison with Atomic Absorption Spectroscopy and Inductively Coupled Plasma Mass Spectrometry. Ann Clin Biochem, 2019, 56 (1). https://doi.org/10.1177/0004563218793163.
  80. Rasheed, A. S.; Qassim, A. W.; Abdulrahman, S. K. Indirect Pharmaceutical and Organic Compounds Analysis by Atomic Absorption Spectroscopy. International Journal of Drug Delivery Technology. 2022. https://doi.org/10.25258/ijddt.12.3.89.
  81. Yasutake, A.; Nagano, M.; Nakano, A. Simple Method for Methylmercury Estimation in Biological Samples Using Atomic Absorption Spectroscopy. Journal of Health Science, 2005, 51 (2). https://doi.org/10.1248/jhs.51.220.
  82. Delves, H. T. Atomic Absorption Spectroscopy in Clinical Analysis. Annals of Clinical Biochemistry. 1987. https://doi.org/10.1177/000456328702400601.
  83. Jaiswal, A. K.; Mohrana, M.; Krishna, P. H. R.; Moon, D. V.; Millo, T.; Murty, O. P. Atomic Absorption Spectrometry - A Review. Journal of Forensic Medicine and Toxicology. 2010.
  84. Rozenfeld, J. H. K.; Duarte, E. L.; Oliveira, T. R.; Lamy, M. T. Structural Insights on Biologically Relevant Cationic Membranes by ESR Spectroscopy. Biophysical Reviews. 2017. https://doi.org/10.1007/s12551-017-0304-4.
  85. Kohno, M. Applications of Electron Spin Resonance Spectrometry for Reactive Oxygen Species and Reactive Nitrogen Species Research. J Clin Biochem Nutr, 2010, 47 (1), 1. https://doi.org/10.3164/JCBN.10-13R.
  86. Waddington, D. E. J.; Sarracanie, M.; Salameh, N.; Herisson, F.; Ayata, C.; Rosen, M. S. An Overhauser-Enhanced-MRI Platform for Dynamic Free Radical Imaging in Vivo. NMR Biomed, 2018, 31 (5). https://doi.org/10.1002/nbm.3896.
  87. Ikeya, M. Use of Electron Spin Resonance Spectrometry in Microscopy, Dating and Dosimetry A Review. Analytical Sciences, 1989, 5 (1). https://doi.org/10.2116/analsci.5.5.
  88. Clark, K. D.; Zhang, C.; Anderson, J. L. Sample Preparation for Bioanalytical and Pharmaceutical Analysis. Anal Chem, 2016, 88 (23), 11262–11270. https://doi.org/10.1021/ACS.ANALCHEM.6B02935/ASSET/IMAGES/LARGE/AC-2016-02935T_0005.JPEG.
  89. Rezaee, M.; Khalilian, F.; Pourjavid, M. R.; Seidi, S.; Chisvert, A.; Abdel-Rehim, M. Extraction and Sample Preparation. Int J Anal Chem, 2015, 2015. https://doi.org/10.1155/2015/397275.
  90. Thurow, K. Strategies for Automating Analytical and Bioanalytical Laboratories. Anal Bioanal Chem, 2023, 415 (21), 5057–5066. https://doi.org/10.1007/S00216-023-04727-2/FIGURES/3.
  91. Liakh, I.; Pakiet, A.; Sledzinski, T.; Mika, A. Modern Methods of Sample Preparation for the Analysis of Oxylipins in Biological Samples. Molecules, 2019, 24 (8). https://doi.org/10.3390/molecules24081639.
  92. Khatibi, S. A.; Hamidi, S.; Siahi-Shadbad, M. R. Application of Liquid-Liquid Extraction for the Determination of Antibiotics in the Foodstuff: Recent Trends and Developments. Critical Reviews in Analytical Chemistry. 2022. https://doi.org/10.1080/10408347.2020.1798211.
  93. Salve, S.; Bahiram, Y.; Jadhav, A.; Rathod, R.; Tekade, R. K. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Critical Reviews in Analytical Chemistry. 2023. https://doi.org/10.1080/10408347.2021.1934651.
  94. Vasconcelos, I.; Fernandes, C. Magnetic Solid Phase Extraction for Determination of Drugs in Biological Matrices. TrAC - Trends in Analytical Chemistry. 2017. https://doi.org/10.1016/j.trac.2016.11.011.
  95. Watt, A. P.; Morrison, D.; Locker, K. L.; Evans, D. C. Higher Throughput Bioanalysis by Automation of a Protein Precipitation Assay Using a 96-Well Format with Detection by LC−MS/MS. Anal Chem, 2000, 72 (5), 979–984. https://doi.org/10.1021/AC9906633.
  96. Polson, C.; Sarkar, P.; Incledon, B.; Raguvaran, V.; Grant, R. Optimization of Protein Precipitation Based upon Effectiveness of Protein Removal and Ionization Effect in Liquid Chromatography-Tandem Mass Spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2003, 785 (2), 263–275. https://doi.org/10.1016/S1570-0232(02)00914-5.
  97. Prosen, H.; Zupančič-Kralj, L. Solid-Phase Microextraction. TrAC Trends in Analytical Chemistry, 1999, 18 (4), 272–282. https://doi.org/10.1016/S0165-9936(98)00109-5.
  98. van de Merbel, N. C.; Brinkman, U. A. T. On-Line Dialysis as a Sample-Preparation Technique for Column Liquid Chromatography. TrAC Trends in Analytical Chemistry, 1993, 12 (6), 249–256. https://doi.org/10.1016/0165-9936(93)87064-5.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP