JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 70 No 1 (2025): Journal of The Chilean Chemical Society
Reviews

“COMPARATIVE ANALYSIS BETWEEN TRADITIONAL AND ELECTROCHEMICAL METHODS FOR THE MULTIELEMENT DETERMINATION OF HEAVY METALS: ADVANCES AND PERSPECTIVES”

Juan C. M. Gamboa
UNIVERSIDAD DE TARAPACA
C.A. Medalla
Universidad de Tarapacá, Departamento de Obstetricia y Puericultura – Facultad de Ciencias de la Salud, Av. 18 de Septiembre #2222, Arica, Chile.
Jorge Bernal
Universidad de Tarapacá, Facultad de Administración y Economía, Av. 18 de Septiembre #2222, Arica, Chile
Published September 5, 2025
Keywords
  • electrochemistry,
  • sensors,
  • multielemental analysis,
  • environment
How to Cite
Gamboa, J. C. M., Medalla Alcayaga , C., & Bernal Peralta, J. (2025). “COMPARATIVE ANALYSIS BETWEEN TRADITIONAL AND ELECTROCHEMICAL METHODS FOR THE MULTIELEMENT DETERMINATION OF HEAVY METALS: ADVANCES AND PERSPECTIVES”. Journal of the Chilean Chemical Society, 70(1), 6246-6249. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/2874

Abstract

This article presents a comparative analysis between traditional and electrochemical methods for the multielemental determination of heavy metals in environmental and biological samples. Recent advances in the application of electrochemical techniques—such as voltammetry—are discussed, highlighting improvements in analytical sensitivity, selectivity, and speed. The advantages and limitations of each approach are examined, and future perspectives are provided for the development of more efficient and sustainable electrochemical methods for heavy metal detection.

201d3c6f-9760-4131-9779-2346e1a802c11.png

References

  1. Çelebi, G. S., Tuzen, M., & Soylak, M. (2010). Determinación simultánea de metales pesados en muestras ambientales mediante ICP-MS después de extracción en punto nube. Journal of Hazardous Materials, 173 (1–3), 260–265. https://doi.org/10.1016/j.jhazmat.2009.08.074
  2. Liang, P., & Sang, X. (2008). Determinación de metales pesados en muestras ambientales por espectrometría de absorción atómica de llama después de extracción en fase sólida. Journal of Hazardous Materials, 152 (1), 66–72. https://doi.org/10.1016/j.jhazmat.2007.06.080
  3. López-Moya, F., Blanco, M. M., & Boluda, R. (2013). Uso de espectrometría de fluorescencia de rayos X portátil para la determinación de metales pesados en muestras ambientales: una revisión. Analytical Methods, 5 (15), 3561–3582. https://doi.org/10.1039/C3AY40670J
  4. Taher, M. A., & Hasan, A. M. (2006). Determinación de metales pesados en muestras ambientales y biológicas mediante espectrometría de absorción atómica electrotérmica tras preconcentración con resinas quelantes. Journal of Hazardous Materials, 134 (1–3), 140–145. https://doi.org/10.1016/j.jhazmat.2005.11.015
  5. Guo, G., Wu, F., Xie, F., & Zhang, R. (2012). Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. Journal of Environmental Sciences, 24 (3), 410–418. https://doi.org/10.1016/S1001-0742(11)60762-6
  6. Bhuiyan, M. A. H., Islam, M. A., Dampare, S. B., Parvez, L., & Suzuki, S. (2010). Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh. Journal of Hazardous Materials, 179 (1–3), 1065–1077. https://doi.org/10.1016/j.jhazmat.2010.03.114
  7. Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221–222, 82–90. https://doi.org/10.1016/j.geoderma.2014.01.007
  8. Mielke, H. W., Gonzales, C. R., Smith, M. K., & Mielke, P. W. (1999). The urban environment and children’s health: Soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, U.S.A. Environmental Research, 81(2), 117–129. https://doi.org/10.1006/enrs.1999.3966
  9. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, Article ID 402647. https://doi.org/10.5402/2011/402647
  10. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8 (3), 199–216. https://doi.org/10.1007/s10311-010-0297-8
  11. Tchounwou, P. B., Yedjou, G. C., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. EXS, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
  12. Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090
  13. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009
  14. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182. https://doi.org/10.1093/bmb/ldg032
  15. Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208. https://doi.org/10.2174/0929867053764635
  16. Rice, K. M., Walker, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health, 47(2), 74–83. https://doi.org/10.3961/jpmph.2014.47.2.74
  17. Gall, J. E., Boyd, R. S., & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: A review. Environmental Monitoring and Assessment, 187(4), 201. https://doi.org/10.1007/s10661-015-4436-3
  18. Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014, Article ID 752708. https://doi.org/10.1155/2014/752708
  19. Giller, K. E., Witter, E., & McGrath, S. P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41(10), 2031–2037. https://doi.org/10.1016/j.soilbio.2009.04.026
  20. He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010
  21. Hernández-Martíne, A. M., Padrón-Sanz, C., Torres Padrón, M. E., Ferrera, Z. S., & Santana Rodríguez, J. J. (2015). Determination of heavy metals in marine sediments using MAME-GFAAS. Journal of Analytical Atomic Spectrometry, 30(4), 435–442. https://doi.org/10.1039/C4JA00342J
  22. Behbahani, M., Bide, Y., Bagheri, A., Salarian, M., Omidi, F., & Nabid, M. R. (2016). A pH responsive nanogel for extraction of heavy metals. Microchimica Acta, 183(1), 111–121. https://doi.org/10.1007/s00604-015-1603-8
  23. Soylak, M., & Kizil, N. (2011). Determination of some heavy metals by flame atomic absorption spectrometry before coprecipitation with neodymium hydroxide. Journal of AOAC International, 94(3), 978–982. https://doi.org/10.1093/jaoac/94.3.978
  24. Jin, M., Yuan, H., Liu, B., Peng, J., Xu, L., & Yang, D. (2020). Review of the distribution and detection methods of heavy metals in the environment. Analytical Methods, 12(37), 5747–5766. https://doi.org/10.1039/D0AY01577F
  25. Biata, N. R., Dimpe, K. M., Ramontja, J., Mketo, N., & Nomngongo, P. N. (2018). Determination of thallium in water samples using ICP-OES after ultrasonic assisted-dispersive solid phase microextraction. Microchemical Journal, 137, 214–222. https://doi.org/10.1016/j.microc.2017.10.020
  26. Briscoe, M. (2015). Determination of heavy metals in food by inductively coupled plasma–mass spectrometry: First Action 2015.01. Journal of AOAC International, 98(4), 1113–1120. https://doi.org/10.5740/jaoac.int.2015.01
  27. Peng, G., He, Q., Zhou, G., Yang, D., Zhang, F., Liu, Y., & Li, W. (2015). Determination of heavy metals in water samples using dual-cloud point extraction coupled with ICP-MS. Analytical Methods, 7(17), 6732–6739. https://doi.org/10.1039/C5AY00801H
  28. Mittal, M., Kumar, K., Anghore, D., & Rawal, R. K. (2017). ICP-MS: Analytical method for identification and detection of elemental impurities. Current Drug Discovery Technologies, 14(2), 106–120. https://doi.org/10.2174/1570163813666161221141402
  29. Kilic, S., Tuzen, M., Soylak, M., & Mendil, D. (2019). Survey of trace elements in bottled natural mineral waters using ICP-MS. Environmental Monitoring and Assessment, 191, 452. https://doi.org/10.1007/s10661-019-7578-x
  30. Komorowicz, I., & Barałkiewicz, D. (2016). Determination of total arsenic and arsenic species in drinking water using ICP-MS. Environmental Monitoring and Assessment, 188(9), 504. https://doi.org/10.1007/s10661-016-5477-y
  31. Bettinelli, M., Beone, G. M., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424(2), 289–296. https://doi.org/10.1016/S0003-2670(00)01123-5
  32. Zhao, Y., Li, Z., Ross, A., Huang, Z., Chang, W., Ou-yang, K., Chen, Y., & Wu, C. (2015). Determination of heavy metals in leather and fur by microwave plasma-atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 112, 6–9. https://doi.org/10.1016/j.sab.2015.06.017
  33. Meche, A., Martins, M. C., Lofrano, B. E. S. N., Hardaway, C. J., Merchant, M., & Verdade, L. (2010). Determination of heavy metals by inductively coupled plasma-optical emission spectrometry in fish from the Piracicaba River in Southern Brazil. Microchemical Journal, 94(2), 171–174. https://doi.org/10.1016/j.microc.2009.10.018
  34. Bao, Q., Li, G., Yang, Z., Pan, P., Liu, J., Li, R., Wei, J., Hu, W., Cheng, W., & Lin, L. (2021). In situ detection of heavy metal ions in sewage with screen-printed electrode-based portable electrochemical sensors. Analyst, 146(17), 5610–5618. https://doi.org/10.1039/D1AN01012C
  35. Reddy, M. M., Benefiel, M. A., & Claassen, H. C. (1986). Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomic absorption spectrometry. Mikrochimica Acta, 88(1), 159–170. https://doi.org/10.1007/BF01196608
  36. Oehme, I., & Wolfbeis, O. S. (1997). Optical sensors for determination of heavy metal ions. Microchimica Acta, 126(1–2), 177–192. https://doi.org/10.1007/BF01242319
  37. García-Miranda Ferrari, A., Carrington, P., Rowley-Neale, S. J., & Banks, C. E. (2020). Recent advances in portable heavy metal electrochemical sensing platforms. Environmental Science: Water Research & Technology, 6(10), 2676–2690. https://doi.org/10.1039/D0EW00407C
  38. Wang, J., Lu, J., Socavar, S. B., Farias, P. A. M., & Ogorevc, B. (2000). Bismuth-coated carbon electrodes for anodic stripping voltammetry. Analytical Chemistry, 72(14), 3218–3222. https://doi.org/10.1021/ac000108x
  39. Li, P. H., Chen, S. H., Li, S. S., Jiang, M., Guo, Z., Liu, J. H., Huang, X. J., & Yang, M. (2019). Sensitive and interference-free electrochemical determination of Pb(II) in wastewater using porous Ce-Zr oxide nanospheres. Journal of Electroanalytical Chemistry, 848, 113290. https://doi.org/10.1016/j.jelechem.2019.113290
  40. Gamboa, J. C. M. (2020). Screen printed electrode of carbon nanotubes modified with gold nanoparticles for simultaneous determination of zinc, lead and copper. Chilean Chemical Society, 65(2), 4842–4844. https://doi.org/10.4067/S0717-97072020000204842
  41. Li, Y., Liu, X., Zeng, X., Liu, Y., Liu, X., Wei, W., & Luo, S. (2009). Simultaneous determination of ultra-trace lead and cadmium at a hydroxyapatite-modified carbon ionic liquid electrode by square-wave stripping voltammetry. Sensors and Actuators B: Chemical, 139(2), 604–610. https://doi.org/10.1016/j.snb.2009.03.045

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP