JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 70 No 3 (2025): Journal of The Chilean Chemical Society
Reviews

THYMOQUINONE DERIVATIVES AS POTENTIAL ANTICANCER AGENTS: A REVIEW

Neelima Shrivastava
Dr.
Bhavinee Sharma
Assist.Professor
Asif Husain
Prof.
Published November 10, 2025
Keywords
  • Thymoquinones, Nigella sativa, anticancer agents, medicinal plants, QSAR studies
How to Cite
Shrivastava, N., Sharma, B., & Husain, A. (2025). THYMOQUINONE DERIVATIVES AS POTENTIAL ANTICANCER AGENTS: A REVIEW. Journal of the Chilean Chemical Society, 70(3), 6350-6358. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/2882

Abstract

Thymoquinone (TQ) is a versatile bioactive moiety initially found in the seeds of Nigella sativa L., along with other medicinal plants such as Thymus vulgaris L., Satureja montana L., and Monarda fistulosa L. Due to its diverse pharmacological properties and potency to treat many diseases like cancer, convulsions, inflammation, etc., it has gained interest from chemists. TQ acts as an anticancer by modulating the key pathways in cellular mechanisms by inhibiting the proliferation of cells, inducing apoptosis, and disrupting the cell cycle. Its clinical applications are still limited due to poor bioavailability, fast metabolism, and low blood retention. To overcome these limitations, advancements in drug delivery systems and QSAR studies are being explored. To develop optimized TQ-based therapies, the understanding of molecular mechanisms is important. The present review provides a better understanding and knowledge of the phytochemical profile of Nigella sativa, the biological activities of thymoquinone, its therapeutic potential in cancer treatment, and highlights ongoing efforts in formulation strategies and drug design to translate its promising pharmacological effects into clinical applications.

2882.jpg

References

  1. Karim, S.; Burzangi, A. S.; Ahmad, A.; Siddiqui, N. A.; Ibrahim, I. M.; Sharma, P.; Abualsunun, W. A.; Gabr, G. A. PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumour Growth and Glycolytic Metabolism in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 2305.
  2. Woo, C. C.; Kumar, A. P.; Sethi, G.; Tan, K. H. Thymoquinone: Potential Cure for Inflammatory Disorders and Cancer. Biochem. Pharmacol. 2012, 83, 443–451.
  3. Banerjee, S.; Padhye, S.; Azmi, A.; Wang, Z.; Philip, P. A.; Kucuk, O.; Sarkar, F. H.; Mohammad, R. M. Review on Molecular and Therapeutic Potential of Thymoquinone in Cancer. Nutr. Cancer 2010, 62, 938–946.
  4. Gali-Muhtasib, H.; Diab-Assaf, M.; Boltze, C.; Al-Hmaira, J.; Hartig, R.; Roessner, A.; Schneider-Stock, R. Thymoquinone Extracted from Black Seed Triggers Apoptotic Cell Death in Human Colorectal Cancer Cells via a p53-Dependent Mechanism. Int. J. Oncol. 2004, 25, 857–866.
  5. Abdelrazek, H. M. A.; Kilany, O. E.; Muhammad, M. A. A.; Tag, H. M.; Abdelazim, A. M. Black Seed Thymoquinone Improved Insulin Secretion, Hepatic Glycogen Storage, and Oxidative Stress in Streptozotocin-Induced Diabetic Male Wistar Rats. Oxid. Med. Cell. Longev. 2018, 2018, 8104165.
  6. Ebrahimi, S. S.; Oryan, S.; Izadpanah, E.; Hassanzadeh, K. Thymoquinone Exerts Neuroprotective Effect in Animal Model of Parkinson’s Disease. Toxicol. Lett. 2017, 276, 108–114.
  7. Gali-Muhtasib, H.; Roessner, A.; Schneider-Stock, R. Thymoquinone: A Promising Anti-Cancer Drug from Natural Sources. Int. J. Biochem. Cell Biol. 2006, 38, 1249–1253.
  8. Al-Jassir, M. S. Chemical Composition and Microflora of Black Cumin (Nigella sativa L.) Seeds Growing in Saudi Arabia. Food Chem. 1992, 45, 239–242.
  9. Hajhashemi, V.; Ghannadi, A.; Jafarabadi, H. Black Cumin Seed Essential Oil, as a Potent Analgesic and Antiinflammatory Drug. Phytother. Res. 2004, 18, 195–199.
  10. Nergiz, C.; Ötleş, S. Chemical Composition of Nigella sativa L. Seeds. Food Chem. 1993, 48, 259–261.
  11. D’Antuono, L. F.; Moretti, A.; Lovato, A. F. Seed Yield, Yield Components, Oil Content and Essential Oil Content and Composition of Nigella sativa L. and Nigella damascena L. Ind. Crops Prod. 2002, 15, 59–69.
  12. Ali, M. A.; Sayeed, M. A.; Alam, M. S.; Yeasmin, M. S.; Khan, A. M.; Muhamad, I. I. Characteristics of Oils and Nutrient Contents of Nigella sativa Linn. and Trigonella foenum-graecum Seeds. Bull. Chem. Soc. Ethiop. 2012, 26, 55–64.
  13. Gharby, S.; Harhar, H.; Guillaume, D.; Roudani, A.; Boulbaroud, S.; Ibrahimi, M.; Ahmad, M.; Sultana, S.; Hadda, T. B.; Chafchaouni-Moussaoui, I.; Charrouf, Z. Chemical Investigation of Nigella sativa L. Seed Oil Produced in Morocco. J. Saudi Soc. Agric. Sci. 2015, 14, 172–177.
  14. El Tahir, K. E. H.; Ashour, M. M. S.; Al-Harbi, M. M. The Respiratory Effects of the Volatile Oil of the Black Seed (Nigella sativa) in Guinea-Pigs: Elucidation of the Mechanism(s) of Action. Gen. Pharmacol. 1993, 24, 1115–1122.
  15. Ali, B.; Blunden, G. Pharmacological and Toxicological Properties of Nigella sativa. Phytother. Res. 2003, 17, 299–305.
  16. Ibrahim, K. G.; Hudu, S. A.; Jega, A. Y.; Taha, A.; Yusuf, A. P.; Usman, D.; Adeshina, K. A.; Umar, Z. U.; Nyakudya, T. T.; Erlwanger, K. H. Thymoquinone: A Comprehensive Review of Its Potential Role as a Monotherapy for Metabolic Syndrome. Iran. J. Basic Med. Sci. 2024, 27, 1214–1227.
  17. Gomathinayagam, R.; Ha, J. H.; Jayaraman, M.; Song, Y. S.; Isidoro, C.; Dhanasekaran, D. N. Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets. J. Cancer Prev. 2020, 25, 136–151.
  18. Karim, S.; Burzangi, A. S.; Ahmad, A.; Siddiqui, N. A.; Ibrahim, I. M.; Sharma, P.; Abualsunun, W. A.; Gabr, G. A. PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 2305.
  19. Woo, C. C.; Kumar, A. P.; Sethi, G.; Tan, K. H. Thymoquinone: Potential Cure for Inflammatory Disorders and Cancer. Biochem. Pharmacol. 2012, 83, 443–451.
  20. Ma, J.; Hu, X.; Li, J.; Wu, D.; Lan, Q.; Wang, Q.; Tian, S.; Dong, W. Enhancing Conventional Chemotherapy Drug Cisplatin-Induced Anti-Tumor Effects on Human Gastric Cancer Cells Both In Vitro and In Vivo by Thymoquinone Targeting PTEN Gene. Oncotarget 2017, 8, 85926–85939.
  21. Imran, M.; Rauf, A.; Khan, I. A.; Shahbaz, M.; Qaisrani, T. B.; Fatmawati, S.; Abu-Izneid, T.; Imran, A.; Rahman, K. U.; Gondal, T. A. Thymoquinone: A Novel Strategy to Combat Cancer: A Review. Biomed. Pharmacother. 2018, 106, 390–402.
  22. Banerjee, S.; Padhye, S.; Azmi, A.; Wang, Z.; Philip, P. A.; Kucuk, O.; Sarkar, F. H.; Mohammad, R. M. Review on Molecular and Therapeutic Potential of Thymoquinone in Cancer. Nutr. Cancer 2010, 62, 938–946.
  23. Almajali, B.; Al-Jamal, H. A.; Taib, W. R.; Ismail, I.; Johan, M. F.; Doolaanea, A. A.; Ibrahim, W. N. Thymoquinone, as a Novel Therapeutic Candidate of Cancers. Pharmaceuticals 2021, 14, 369.
  24. Al-Gabri, N. A.; Saghir, S. A.; Al-Hashedi, S. A.; El-Far, A. H.; Khafaga, A. F.; Swelum, A. A.; Al-Wajeeh, A. S.; Mousa, S. A.; Abd El-Hack, M. E.; Naiel, M. A.; El-Tarabily, K. A. Therapeutic Potential of Thymoquinone and Its Nanoformulations in Pulmonary Injury: A Comprehensive Review. Int. J. Nanomed. 2021, 16, 5117–5131.
  25. Tiwari, G.; Gupta, M.; Devhare, L. D.; Tiwari, R. Therapeutic and Phytochemical Properties of Thymoquinone Derived from Nigella sativa. Curr. Drug Res. Rev. 2024, 16, 145–156.
  26. Sharma, P.; Yelne, M.; Dennis, T.; Joshi, A.; Billore, K. Database on Medicinal Plants Used in Ayurveda; Central Council for Research in Ayurveda and Siddha: New Delhi, 2005; pp 420–440.
  27. Ahmad, A.; Mishra, R. K.; Vyawahare, A.; Kumar, A.; Rehman, M. U.; Qamar, W. Thymoquinone (2-Isopropyl-5-methyl-1,4-benzoquinone) as a Chemopreventive/Anticancer Agent: Chemistry and Biological Effects. Saudi Pharm. J. 2019, 27, 1113–1126.
  28. Ramadan, M. F. Black Cumin (Nigella sativa) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V. R., Ed.; Academic Press: San Diego, 2016; pp 269–275.
  29. Azami, S.; Forouzanfar, F. Potential Role of Nigella sativa and Its Constituent (Thymoquinone) in Ischemic Stroke. Curr. Mol. Med. 2024, 24, 327–334.
  30. El-Dakhakhny, M. Studies on the Chemical Constitution of Egyptian Nigella sativa. Planta Med. 1963, 11, 465–470.
  31. Dalli, M.; Bekkouch, O.; Azizi, S. E.; Azghar, A.; Gseyra, N.; Kim, B. Nigella sativa L. Phytochemistry and Pharmacological Activities: A Review (2019–2021). Biomolecules 2021, 12, 20.
  32. Gali-Muhtasib, H.; Roessner, A.; Schneider-Stock, R. Thymoquinone: A Promising Anti-Cancer Drug from Natural Sources. Int. J. Biochem. Cell Biol. 2006, 38, 1249–1253.
  33. Pawar, R. R.; Pawar, S. S.; Yeole, R. B.; Bhutada, S. A.; Dahikar, S. B.; Kovaleva, E. G. Unveiling the Power of Nigella sativa: A Comprehensive Review of Its Phytochemical Antioxidant and Anticancer Potential. In The School on Biotechnology for Students, Ph.D. Students and Young Scientists, Yekaterinburg, 2025; pp 45–52.
  34. Gurbilek, M.; Deniz, C. D.; Eroglu Gunes, C.; Kurar, E.; Reisli, I.; Kursunel, M. A.; Topcu, C.; Koc, M. Anticancer Activity of Thymoquinone in Non-Small Cell Lung Cancer and Possible Involvement of PPAR-γ Pathway. Int. J. Radiat. Biol. 2025, 101, 1–2.
  35. Çetinalp, P.; Geyik, Ö. G.; Malcanlı, S.; Değirmencioğlu, S.; Küçük, S. T.; Koçak, H.; Ulukaya, E. Investigation of Apoptotic Effects of Thymoquinone on Glioblastoma Cells. Bratisl. Med. J. 2025, 126, 1–1.
  36. Khan, M. A.; Tania, M.; Fu, S.; Fu, J. Thymoquinone, as an Anticancer Molecule: From Basic Research to Clinical Investigation. Oncotarget 2017, 8, 51907–51919.
  37. Attoub, S.; Sperandio, O.; Raza, H.; Arafat, K.; Al-Salam, S.; Al Sultan, M. A.; Al Safi, M.; Takahashi, T.; Adem, A. Thymoquinone as an Anticancer Agent: Evidence from Inhibition of Cancer Cells Viability and Invasion In Vitro and Tumor Growth In Vivo. Fundam. Clin. Pharmacol. 2013, 27, 557–569.
  38. DePompolo, M. A.; Kidd, J. D.; Knoll, B. E.; Laine, R. A.; Marks, T. J.; Moore, J. W.; Siedle, A. R. Organolanthanide and Organoactinide Oxidative Transformations. U.S. Patent 10,501,428 B2, December 10, 2019.
  39. Bilbrey, J. A.; Brantley, J. N.; Gesquiere, A. J.; Locklin, K. L.; Lusker, K. L. Polymeric Compositions and Methods of Making and Using Thereof. U.S. Patent 9,446,034 B2, September 20, 2016.
  40. Nakano, T.; Okuno, S.; Sano, S.; Takao, Y. Method for Producing Optically Active Compound. WO Patent 2019163055A1, August 29, 2019.
  41. Esteves, A. P.; Jones, M. E.; Murdoch, M. T.; Broomhall, R. N. R. Method for the Synthesis of Cyclic Depsipeptides. EP Patent 3215478A1, September 13, 2017.
  42. Khan, A.; Alsahli, M. A.; Aljasir, M. A.; Maswadeh, H.; Mobark, M. A.; Azam, F.; Allemailem, K. S.; Alrumaihi, F.; Alhumaydhi, F. A.; Alwashmi, A. S.; Almatroudi, A. A. Safety, Stability, and Therapeutic Efficacy of Long-Circulating TQ-Incorporated Liposomes: Implication in the Treatment of Lung Cancer. Pharmaceutics 2022, 14, 153.
  43. Alhmied, F.; Alammar, A.; Alsultan, B.; Alshehri, M.; Pottoo, F. H. Molecular Mechanisms of Thymoquinone as Anticancer Agent. Comb. Chem. High Throughput Screen. 2021, 24, 1644–1653.
  44. Kundu, J.; Chun, K. S.; Aruoma, O. I.; Kundu, J. K. Mechanistic Perspectives on Cancer Chemoprevention/Chemotherapeutic Effects of Thymoquinone. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2014, 768, 22–34.
  45. Abdelazeem, A. H.; Mohamed, Y. M.; Gouda, A. M.; Omar, H. A.; Al Robaian, M. M. Novel Thymohydroquinone Derivatives as Potential Anticancer Agents: Design, Synthesis, and Biological Screening. Aust. J. Chem. 2016, 69, 1277–1284.
  46. Eid, E. E.; Almaiman, A. A.; Alshehade, S. A.; Alsalemi, W.; Kamran, S.; Suliman, F. O.; Alshawsh, M. A. Characterization of Thymoquinone-Sulfobutylether-β-Cyclodextrin Inclusion Complex for Anticancer Applications. Molecules 2023, 28, 4096.
  47. Ulfa, S. M.; Sholikhah, S.; Utomo, E. P. Synthesis of Thymoquinone Derivatives and Its Activity Analysis: In-Silico Approach. In AIP Conference Proceedings; AIP Publishing, 2017; Vol. 1823, p 020013.
  48. Kale, E.; Kale, A.; Bozali, K.; Gulgec, A. S.; Ozdemir, M.; Yalcin, B.; Guler, E. M. TQ-Ox, a Novel Synthetic Derivative of Thymoquinone on Ovarian Cancer Cells In Vitro. Nat. Prod. Res. 2023, 37, 3015–3024.
  49. Fröhlich, T.; Ndreshkjana, B.; Muenzner, J. K.; Reiter, C.; Hofmeister, E.; Mederer, S.; Fatfat, M.; El-Baba, C.; Gali-Muhtasib, H.; Schneider-Stock, R.; Tsogoeva, S. B. Synthesis of Novel Hybrids of Thymoquinone and Artemisinin with High Activity and Selectivity Against Colon Cancer. ChemMedChem 2017, 12, 226–234.
  50. Czajkowska, A.; Gornowicz, A.; Pawłowska, N.; Czarnomysy, R.; Nazaruk, J.; Szymanowski, W.; Bielawska, A.; Bielawski, K. Anticancer Effect of a Novel Octahydropyrazino[2,1-a:5,4-a′]diisoquinoline Derivative and Its Synergistic Action with Nigella sativa in Human Gastric Cancer Cells. Biomed. Res. Int. 2017, 2017, 9153403.
  51. Glamočlija, U.; Padhye, S.; Špirtović-Halilović, S.; Osmanović, A.; Veljović, E.; Roca, S.; Novaković, I.; Mandić, B.; Turel, I.; Kljun, J.; Trifunović, S. Synthesis, Biological Evaluation and Docking Studies of Benzoxazoles Derived from Thymoquinone. Molecules 2018, 23, 3297.
  52. Dirican, A.; Aktaş, S.; Aktaş, T. Ç.; Erol, A.; Gökbayrak, Ö. E.; Kolatan, E.; Serinan, E. Ö.; Altun, Z.; Somalı, I.; Yılmaz, O. Effect of Thymoquinone in Combination with Nivolumab on Experimental Renal Cell Cancer Models. Sağlık Bilimlerinde İleri Araştırmalar Dergisi 2022, 5, 63.
  53. Farghaly, M. E.; Khowailed, A. A.; Aboulhoda, B. E.; Rashed, L. A.; Gaber, S. S.; Ashour, H. Thymoquinone Potentiated the Anticancer Effect of Cisplatin on Hepatic Tumorigenesis by Modulating Tissue Oxidative Stress and Endoplasmic GRP78/CHOP Signaling. Nutr. Cancer 2022, 74, 278–287.
  54. Suriyah, W. H.; Ichwan, S. J.; Isa, M. L. Enhancement of Cisplatin Cytotoxicity in Combination with Thymoquinone on Oral Cancer HSC-4 Cell Line. In Mater. Sci. Forum; Trans Tech Publications Ltd, 2021; Vol. 1025, pp 236–241.
  55. Aumeeruddy, M. Z.; Mahomoodally, M. F. Combating Breast Cancer Using Combination Therapy with 3 Phytochemicals: Piperine, Sulforaphane, and Thymoquinone. Cancer 2019, 125, 1600–1611.
  56. Eloraby, D. A.; El-Gayar, S. F.; El-Bolok, A. H.; Ammar, S. G.; ElShafei, M. M. In Vitro Assessment of the Cytotoxic Effect of 5-Fluorouracil, Thymoquinone and Their Combination on Tongue Squamous Cell Carcinoma Cell Line. Asian Pac. J. Cancer Prev. 2024, 25, 2169–2175.
  57. Fath, M. K.; Nasiri, K.; Ghasemzadeh, S.; Nejati, S. T.; Ghafari, N.; Masouleh, S. S.; Dadgar, E.; Kazemi, K. S.; Esfahaniani, M. Thymoquinone Potentiates Anti-Cancer Effects of Cisplatin in Oral Squamous Cell Carcinoma via Targeting Oxidative Stress. Chem. Biol. Drug Des. 2024, 103, e14492.
  58. Talib, W. H. Regressions of Breast Carcinoma Syngraft Following Treatment with Piperine in Combination with Thymoquinone. Sci. Pharm. 2017, 85, 27.
  59. Pazhouhi, M.; Sariri, R.; Rabzia, A.; Khazaei, M. Thymoquinone Synergistically Potentiates Temozolomide Cytotoxicity Through the Inhibition of Autophagy in U87MG Cell Line. Iran. J. Basic Med. Sci. 2016, 19, 890–898.
  60. Bai, P.; Wang, P.; Ren, T.; Tang, Q.; Lin, Z.; Zhang, N.; Zhao, L.; Zhong, R.; Sun, G. Natural Small Molecule Thymoquinone Increases the Chemosensitivity of Glioblastoma to Temozolomide Through Inhibiting Wnt/β-Catenin Signaling Pathway to Downregulate MGMT Expression: In Vitro and In Vivo Validation. Biochem. Pharmacol. 2025, 223, 116886.
  61. Alam, S.; Mohammad, T.; Padder, R. A.; Hassan, M. I.; Husain, M. Thymoquinone and Quercetin Induce Enhanced Apoptosis in Non-Small Cell Lung Cancer in Combination Through the Bax/Bcl2 Cascade. J. Cell. Biochem. 2022, 123, 259–274.
  62. Wei, C.; Zou, H.; Xiao, T.; Liu, X.; Wang, Q.; Cheng, J.; Fu, S.; Peng, J.; Xie, X.; Fu, J. TQFL12, a Novel Synthetic Derivative of TQ, Inhibits Triple-Negative Breast Cancer Metastasis and Invasion Through Activating AMPK/ACC Pathway. J. Cell. Mol. Med. 2021, 25, 10101–10110.
  63. Salem, A. A.; El Haty, I. A.; Abdou, I. M.; Mu, Y. Interaction of Human Telomeric G-Quadruplex DNA with Thymoquinone: A Possible Mechanism for Thymoquinone Anticancer Effect. Biochim. Biophys. Acta Gen. Subj. 2015, 1850, 329–342.
  64. El-Far, A.; Liu, X.; Xiao, T.; Du, J.; Du, X.; Wei, C.; Cheng, J.; Zou, H.; Fu, J. TQFL19, a Novel Derivative of Thymoquinone (TQ), Plays an Essential Role by Inhibiting Cell Growth, Metastasis, and Invasion in Triple-Negative Breast Cancer. Molecules 2025, 30, 773.
  65. Shadyro, O.; Sosnovskaya, A.; Edimecheva, I.; Kireicikova, L.; Samovich, S.; Dubovik, B.; Krasny, S.; Tzerkovsky, D. Anticancer Activity of Thymoquinone and Its Combinations with Doxorubicin and Linseed Oil in the Treatment of Xenograft Tumors. Adv. Tradit. Med. 2025, 25, 197–209.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP