JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 70 No 1 (2025): Journal of The Chilean Chemical Society
Original Research Papers

BIOCHEMICAL DIVERSITY AND COMPOSITION OF THE UNSTUDIED PATAGONIAN ENDEMIC PLANT Benthamiella azorella (skottsb). Soriano: ANTIOXIDANT, ANTIBACTERIAL AND CYTOTOXIC ACTIVITY ON VARIOUS HUMAN CELL LINES

Published September 5, 2025
Keywords
  • Benthamiella,
  • Patagonia,
  • Antioxidant,
  • Antibacterial,
  • Cytotoxicity,
  • Polysaccharides,
  • LC-MS,
  • Metabolites profiles
  • ...More
    Less
How to Cite
Díaz-Hernández, D., Martinez-Albardonedo, B., Arijo, S., Sanhueza, V., Becerra, J., Abdala-Díaz, R. T., & Fajardo, V. (2025). BIOCHEMICAL DIVERSITY AND COMPOSITION OF THE UNSTUDIED PATAGONIAN ENDEMIC PLANT Benthamiella azorella (skottsb). Soriano: ANTIOXIDANT, ANTIBACTERIAL AND CYTOTOXIC ACTIVITY ON VARIOUS HUMAN CELL LINES. Journal of the Chilean Chemical Society, 70(1), 6250-6261. Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/2883

Abstract

Benthamiella (Solanaceae) is an unstudied endemic genus of the Chilean-Argentinean Patagonia that thrives in harsh climatic and geographic conditions. This study provides a biochemical description of the aerial parts, roots, and polysaccharides of B. azorella, and evaluates their antioxidant, antiproliferative and antibacterial activity. GC-MSanalysis of B. azorella roots polysaccharides identified significant amounts of arabinose, glucose and galacturonic acid. The FT-IR spectrum revealed a diverse range of functional groups. Both analyses suggest a complex polysaccharide structure that may enhance the sample’s functional properties. Elemental analysis showed low nitrogenand sulfur content, while proximate analysis showed significant differences in carbohydrates, lipids, fiber, and ash content between the plant parts. Polyphenols quantification determined a higher concentration in the roots (6.66 ± 0.62 mg GAE g-1 DW) compared to the aerial parts. Likewise, the highest antioxidant capacity was observed in theroots using the DPPH (89.43 ± 0.74 µmol AAE g-1 DW at 1818 µg mL-1) method. The aqueous root extract exhibited higher activity against colon cancer HCT-116 followedby aerial parts. Polysaccharides showed slight activity against hepatocytes cancer HepG2. The extracts behaved variably on the healthy keratinocytes HACAT cell line, tending to promote cell proliferation. Both, aqueous and ethanolic B. azorella solutions were non-toxic, did not show quorum quenching and antibacterial activity against human and fish bacterial strains at the tested concentrations. Finally, 21 metabolites, principally hydroxycoumarins, sapogenins and steroids derivatives were tentatively identified in themost active extract using LC-MS analysis. Further assays of B. azorella roots with cancer and healthy cells lines and new bacterial analysis at higher concentrations are recommended.

 

2883.jpg

References

  1. S. D. Matteucci, Ecorregión Estepa Patagónica, in Ecorregiones y Complejos Ecosistémicos Argentinos, Edited by J. Morello, S. D. Matteucci, A. F. Rodriguez, and M. Silva, Buenos Aires (2012), pp. 549– 654.
  2. C. Calfío and J. P. Huidobro-Toro, Molecules 24, 2700 (2019).
  3. L. Olivares-Caro, D. Nova-Baza, C. Radojkovic, L. Bustamante, D. Duran, D. Mennickent, V. Melin, D. Contreras, A. J. Perez, and C. Mardones, Antioxidants (Basel) 12, 304 (2023).
  4. S. González, P. E. Guerra, H. Bottaro, S. Molares, M. S. Demo, M. M. Oliva, M. P. Zunino, and J. A. Zygadlo, Flavour Fragr. J. 19, 36 (2004).
  5. M. Reina, O. Santana, D. M. Domínguez, L. Villarroel, V. Fajardo, M. L. Rodríguez, and A. González-Coloma, Chem. Biodivers. 9, 625 (2012).
  6. C. Calderón-Reyes, R. S. Pezoa, P. Leal, A. Ribera-Fonseca, C. Cáceres,
  7. I. Riquelme, T. Zambrano, D. Peña, M. Alberdi, and M. Reyes-Díaz, J. Soil Sci. Plant Nutr. 20, 1891 (2020).
  8. A. Soriano, Darwiniana 8, 233 (1948).
  9. S. Arroyo, Bot. Not. 133, 67 (1980).
  10. M. V. Palchetti, J. J. Cantero, and G. E. Barboza, An. Acad. Bras. Cienc.
  11. (2020).
  12. E. Eich, solanaceae and convolvulaceae: Secondary Metabolites, Berlin, Germany, Springer Berlin, Heidelberg (2008).doi:10.1007/978-3-540- 74541-9
  13. M. Muñoz-Schick, A. Moreira-Muñoz, and S. Moreira Espinoza, Gayana Bot. 69, 309 (2012).
  14. R. Rodriguez, C. Marticorena, D. Alarcón, C. Baeza, L. Cavieres, V. L. Finot, N. Fuentes, A. Kiessling, M. Mihoc, A. Pauchard, E. Ruiz, P.
  15. Sanchez, and A. Marticorena, Gayana Botánica 75, 1 (2018).
  16. A. M. Beeskow, M. A. Monsalve, and V. N. Duro, An. del Instututo la Patagon. 33, 5 (2005).
  17. E. L. Sánchez-Montoya, M. A. Reyes, J. Pardo, J. Nuñez-Alarcón, J. G. Ortiz, J. C. Jorge, J. Bórquez, A. Mocan, and M. J. Simirgiotis, Front. Pharmacol. 8, 494 (2017).
  18. G. Schmeda-hirschmann and C. Theoduloz, J. Ethnopharmacol. 228, 26 (2019).
  19. R. R. Mosad, M. H. Ali, M. T. Ibrahim, H. M. Shaaban, M. Emara, and A.
  20. E. Wahba, Phytochem. Lett. 22, 167 (2017).
  21. C. Mesas, M. Fuel, R. Martínez, J. Prados, C. Melguizo, and J. M. Porres,
  22. Crit. Rev. Food Sci. Nutr. 62, 6293 (2022).
  23. G. Gong, Q. Liu, Y. Deng, T. Dang, W. Dai, T. Liu, Y. Liu, J. Sun, L. Wang,
  24. Y. Liu, T. Sun, S. Song, Z. Wang, and L. Huang, Int. J. Biol. Macromol.
  25. , 639 (2020).
  26. M. Afroz, S. Akter, A. Ahmed, R. Rouf, J. A. Shilpi, E. Tiralongo, S. D. Sarker, U. Göransson, and S. J. Uddin, Front. Pharmacol. 11, 565 (2020).
  27. A. Aisha, A. Arshad, S. Goher, and M. Iqbal, Am. Int. J. Biol. Life Sci. 2, 28 (2020).
  28. C. Huanquilef, J. Espinoza, A. Mutis, L. Bardehle, E. Hormazábal, A. Urzúa, and A. Quiroz, J. Soil Sci. Plant Nutr. 21, 13 (2021).
  29. C. Paz, V. Burgos, A. Iturra, R. Rebolledo, L. Ortiz, R. Baggio, J. Becerra, and C. L. Cespedes-acuña, Ind. Crop. Prod. 122, 232 (2018).
  30. M. L. Parages, R. M. Rico, R. T. Abdala-Díaz, M. Chabrillón, T. G. Sotiroudis, and C. Jiménez, J. Appl. Phycol. 24, 1537 (2012).
  31. H. H. Yeoh and Y. C. Wee, Food Chem. 49, 245 (1994).
  32. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Anal. Chem. 28, 350 (1956).
  33. J. Folch, M. Lees, and G. H. Sloane Stanley, J. Biol. Chem. 226, 497 (1957).
  34. V. L. Singleton and J. A. Rossi, Am. J. Enol. Vitic. 16, 144 (1965).
  35. W. Brand-Williams, M. E. Cuvelier, and C. Berset, LWT - Food Sci. Technol. 28, 25 (1995).
  36. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice- Evans, Free Radic. Biol. Med. 26, 1231 (1999).
  37. R. T. Abdala Díaz, V. Casas Arrojo, M. A. Arrojo Agudo, C. Cárdenas, S. Dobretsov, and F. L. Figueroa, Mar. Biotechnol. 21, 577 (2019).
  38. J. García-Márquez, A. Barany, Á. B. Ruiz, B. Costas, S. Arijo, and J. M. Mancera, Fishes 6, 61 (2021).
  39. Y. M. Ibrahim, A. M. Abouwarda, and F. A. Omar, Antonie Van Leeuwenhoek 113, 1601 (2020).
  40. P. Chen, N. U. Jung, V. Giarola, and D. Bartels, Front. Plant Sci. 10, 1698 (2019).
  41. B. Plancot, B. Gügi, J. Mollet, C. Loutelier-Bourhis, S. R. Govind, P. Lerouge, M.-L. Follet-Gueye, M. Vicré, C. Alfonso, E. Nguema-ona, M. Bardor, and A. Driouich, Carbohydr. Polym. 208, 180 (2019).
  42. A. San-Martín, M. Bacho, S. Nuñez, J. Rovirosa, A. Soler, V. Blanc, R. León, and F. Olea, J. Chil. Chem. Soc. 63, 4082 (2018).
  43. J. Bórquez, A. Ardiles, L. A. Loyola, L. M. Peña-Rodriguez, G. M. Molina- salinas, J. Vallejos, I. G. Collado, and M. J. Simirgiotis, Molecules 19, 3898 (2014).
  44. S. López, B. Lima, L. Aragón, L. A. Espinar, A. Tapia, S. Zacchino, J. Zygadlo, G. E. Feresin, and M. L. López, Chem. Biodivers. 9, 1452 (2012).
  45. J. H. Lee, D. Lee, J. J. Kang, H. T. Joo, J. H. Lee, H. W. Lee, S. H. Ahn, C.
  46. K. Kang, and S. H. Lee, Biogeosciences 14, 1903 (2017).
  47. I. Trabelsi, S. Ben Slima, N. Ktari, M. Bouaziz, and R. Ben Salah, Biomed Res. Int. 6349019 (2021).doi:10.1155/2021/6349019
  48. A. I. Ashurov, A. S. Dzhonmurodov, S. R. Usmanova, S. E. Kholov, and Z.
  49. K. Muhidinov, Appl. Chem. Biotechnol. 11, 281 (2021).
  50. A. Rohman, R. Widyaningtyas, and F. Amalia, Int. Food Res. J. 24, 1362 (2017).
  51. S. Mazurek, A. Mucciolo, B. M. Humbel, and C. Nawrath, Plant J. 74, 880 (2013).
  52. W. Qi, X. Zhou, J. Wang, K. Zhang, Y. Zhou, S. Chen, S. Nie, and M. Xie,
  53. Carbohydr. Polym. 237, 116113 (2020).
  54. J. Zhang, C. Wen, H. Zhang, and Y. Duan, Int. J. Biol. Macromol. 139, 409 (2019).
  55. Q. Guo, L. Ai, and S. Cui, Methodology for Structural analysis of polysaccharides, Springer Cham (2018).
  56. D. Martinho and A. Karmali, J. Can. Res. Updates 8, 29 (2019).
  57. J. Liang, M. Zhao, S. Xie, D. Peng, M. An, Y. Chen, P. Li, and B. Du, J. Food Biochem. 46, e14355 (2022).
  58. B. Liao, D. Zhu, K. Thakur, L. Li, J. Zhang, and Z. Wei, Molecules 22, 2271 (2017).
  59. M. Zhang, N. Su, Q. Huang, Q. Zhang, Y. Wang, J. Li, and M. Ye, J. Food Drug Anal. 25, 976 (2017).
  60. K. Arunkumar, R. Raja, V. B. Sameer Kumar, A. Joseph, T. Shilpa, and
  61. I. S. Carvalho, J. Food Meas. Charact. 15, 567 (2021).
  62. R. Xu, X. Yang, J. Wang, H. Zhao, W. Lu, J. Cui, C.-L. Cheng, P. Zou,
  63. W.-W. Huang, P. Wang, W.-J. Li, and X.-L. Hu, Int. J. Mol. Sci. 13, 14262 (2012).
  64. S. M. Mäusle, N. Agarwala, V. G. Eichmann, H. Dau, D. J. Nürnberg, and
  65. G. Hastings, Photosynth. Res. 159, 229 (2024).
  66. S. Zaim, O. Cherkaoui, H. Rchid, R. Nmila, and R. El Moznie, Polym. from Renew. Resour. 11, 49 (2020).
  67. J. Vega, T. S. Catalá, J. García-Márquez, L. G. Speidel, S. Arijo, N. Cornelius Kunz, C. Geisler, and F. L. Figueroa, Mar. Drugs 21, 5 (2022).
  68. P. Chandran R, MOJ Food Process. Technol. 4, 74 (2017).
  69. M. Mandal, D. Misra, N. N. Ghosh, and V. Mandal, Asian Pac. J. Trop. Biomed. 7, 979 (2017).
  70. M. Arif, Y. Li, M. M. El-Dalatony, C. Zhang, X. Li, and E.-S. Salama,
  71. Renew. Energy 163, 1973 (2021).
  72. S. Radic-Schilling, P. Corti, R. Muñoz-Arriagada, N. Butorovic, and L. Sánchez-Jardón, Capítulo 7. Ecosistemas de estepa en la Patagonia chilena: distribución, clima, biodiversidad y amenazas para su manejo sostenible, in Conservación en la Patagonia chilena: evaluación del conocimiento, oportunidades y desafíos, Edited by M. J. Castilla, J. C., Armesto, J. J., Martínez-Harms, Santiago, Chile, Ediciones Universidad Católica (2021), pp. 223–256.
  73. I. Hameed and F. Hussain, Pak. J. Pharm. Sci. 28, 1203 (2015).
  74. E. Reszczy and A. Hanaka, Cell Biochem. Biophys. 78, 401 (2020).
  75. V. Lokapur, V. Jayakar, and M. Shantaram, Biomedicine 40, 460 (2020).
  76. M. de Armas-Ricard, F. Quinán-Cardenas, H. Sanhueza, R. Pérez-Vidal,
  77. C. Mayorga-lobos, and O. Ramírez-Rodríguez, Molecules 26, 6722 (2021).
  78. S. Singh, M. F. Sk, A. Sonawane, P. Kar, and S. Sadhukhan, J. Biomol. Struct. Dyn. 39, 6249 (2021).
  79. I. Gülçin, A. C. Gören, P. Taslimi, S. H. Alwasel, O. Kilic, and E. Bursal,
  80. Biocatal. Agric. Biotechnol. 23, 101441 (2020).
  81. I. Dominguez-lópez, M. Pérez, and R. M. Lamuela-Raventós, Crit. Rev. Food Sci. Nutr. 1 (2023).doi:10.1080/10408398.2023.2220031
  82. J. Vega, F. Álvarez-Gómez, L. Güenaga, F. L. Figueroa, and J. L. Gómez- Pinchetti, Aquaculture 522, 735088 (2020).
  83. R. Bridi, M. J. Troncoso, C. Folch-Cano, J. Fuentes, H. Speisky, and C. López-Alarcón, Food Anal. Methods 7, 2075 (2014).
  84. X. Hu, D. Dong, M. Xiab, Y. Yanga, J. Wanga, J. Sua, L. Sun, and H. Yu,
  85. New J. Chem. 44, 11405 (2020).
  86. Y. A. Hajam, R. Rani, S. Y. Ganie, T. A. Sheikh, D. Javaid, S. S. Qadri,
  87. S. Pramodh, A. Alsulimani, M. F. Alkhanani, S. Harakeh, A. Hussain, S. Haque, and M. S. Reshi, Cells 11, 552 (2022).
  88. S. Anwar, M. Faisal Nadeem, I. Pervaiz, U. Khurshid, N. Akmal, K. Aamir, M. Haseeb ur Rehman, K. Almansour, F. Alshammari, M. F. Shaikh, M. Locatelli, N. Ahemad, and H. Saleem, Front. Plant Sci. 13, 988352 (2022).
  89. H. F. Zohra, E. Ramazan, and H. Ahmed, Acta Biológica Colomb. 27, 403 (2021).
  90. K. Ghafoor, F. Al Juhaimi, M. M. Özcan, N. Uslu, E. E. Babiker, and I.
  91. A. Mohamed Ahmed, LWT - Food Sci. Technol. 126, 109354 (2020).
  92. A. Saffaryazdi, A. Ganjeali, R. Farhoosh, and M. Cheniany, Physiol. Mol. Biol. Plants 26, 1519 (2020).
  93. N. Nagahama, B. Gastaldi, M. N. Clifford, M. M. Manifesto, and R. H. Fortunato, AIMS Agric. Food 6, 106 (2020).
  94. R. Wolosiak, B. Dru, D. Derewiaka, M. Piecyk, E. Majewska, M. Ciecierska, E. Worobiej, and P. Pakosz, Molecules 27, 50 (2022).
  95. B. Gastaldi, Y. Assef, C. Van Baren, P. Di Leo Lira, D. Retta, A. L. Bandoni, and S. B. González, Rev. Cuba. Plantas Med. 21, 51 (2016).
  96. M. Karama´c, F. Gai, E. Longato, G. Meineri, M. A. Janiak, R. Amarowicz, and P. G. Peiretti, Antioxidants 8, 173 (2019).
  97. F. Jiménez-Aspee, S. Thomas-Valdés, A. Schulz, A. Ladio, C. Theoduloz, and G. Schmeda-Hirschmann, Food Sci. Nutr. 4, 595 (2015).
  98. M. C. Varela, I. Arslan, M. A. Reginato, A. M. Cenzano, and M. V. Luna,
  99. Plant Physiol. Biochem. 104, 81 (2016).
  100. M. R. Islam, S. Ahmed, S. I. Sadia, A. K. Sarkar, and M. A. Alam, Asian J. Res. Biochem. 13, 43 (2023).
  101. O. P. N. Yarley, A. B. Kojo, C. Zhou, X. Yu, A. Gideon, H. H. Kwadwo, and O. Richard, Int. J. Biol. Macromol. 183, 2262 (2021).
  102. J. M. Calderón-Montaño, S. M. Martínez-Sánchez, V. Jiménez-González, E. Burgos-Morón, E. Guillén-Mancina, J. J. Jiménez-Alonso, P. Díaz-Ortega,
  103. F. García, A. Aparicio, and M. López-Lázaro, Plants (Basel) 10, 2193 (2021).
  104. B. Gastaldi, G. Marino, Y. Assef, F. M. Silva Sofrás, C. A. N. Catalán, and
  105. S. B. González, Plant Foods Hum. Nutr. 73, 180 (2018).
  106. P. Rohilla, H. Jain, A. Chhikara, L. Singh, and P. Dahiya, South African J. Bot. 149, 269 (2022).
  107. W. Ahmed, D. Mofed, A. Zekri, N. El-sayed, M. Rahouma, and S. Sabet, J. Int. Med. Res. 46, 1358 (2018).
  108. D. H. Abou Baker and H. M. Rady, Plant Arch. 20, 3285 (2020).
  109. D. O. Nkwe, B. Lotshwao, G. Rantong, J. Matshwele, T. E. Kwape, K. Masisi, G. Gaobotse, K. Hefferon, and A. Makhzoum, Cancers (Basel). 13, 4989 (2021).
  110. N. Fadl Almoulah, Y. Voynikov, R. Gevrenova, H. Schohn, T. Tzanova, S. Yagi, J. Thomas, B. Mignard, A. A. A. Ahmed, M. A. El Siddig, R. Spina, and D. Laurain-mattar, South African J. Bot. 112, 368 (2017).
  111. F. S. Mohammed, E. Kına, M. Sevindik, M. Dogan, and M. Pehlivan,
  112. Turkish J. Agric. - Food Sci. Technol. 9, 818 (2021).
  113. L. Manosalva, A. Mutis, A. Urzúa, V. Fajardo, and A. Quiroz, Molecules 21, 76 (2016).
  114. I. Montenegro, M. Valenzuela, N. Zamorano, R. Santander, C. Baez, and A. Madrid, Nat. Prod. Res. 35, 2072 (2021).
  115. N. B. Turan and G. Ö. Engin, Quorum Quenching, in Fundamentals of Quorum Sensing, Analytical Methods and Applications in Membrane Bioreactors, Comprehensive Analytical Chemistry (2018), pp. 117–149.
  116. X. Zhao, Z. Yu, and T. Ding, Microorganisms 8, 425 (2020).
  117. G. Singh, E. Tamboli, A. Acharya, C. Kumarasamy, K. Mala, and P. Raman,
  118. Med. Hypotheses 84, 539 (2015).
  119. F. Moradi and N. Hadi, New Microbes New Infect. 42, 100882 (2021).
  120. P. Kusari, S. Kusari, M. Lamshöft, S. Sezgin, M. Spiteller, and O. Kayser,
  121. Appl. Microbiol. Biotechnol. 98, 7173 (2014).
  122. B. X. Valencia Quecán, M. L. Castillo Rivera, and U. M. Pinto, Chapter 19. Bioactive phytochemicals targeting microbial activities mediated by quorum sensing, Springer Nature Singapore Pte Ltd. (2018).doi:10.1007/978-981- 10-9026-4_19
  123. X. Yi, Z. Gao, L. Liu, Q. Zhu, G. Hu, and X. Zhou, Front. Environ. Sci. Eng.
  124. , 109 (2020).
  125. S. Parvez, C. Venkataraman, and S. Mukherji, Environ. Int. 32, 265 (2006).
  126. E. C. Faria, B. J. Treves Brown, and R. D. Snook, J. Environ. Monit. 6, 97 (2004).
  127. M. D. Hernando, S. De Vettori, M. J. Martínez Bueno, and A. R. Fernández- Alba, Chemosphere 68, 724 (2007).
  128. M. K. Patel, S. Pandey, M. Kumar, M. I. Haque, S. Pal, and N. S. Yadav,
  129. Plants 10, 2409 (2021).
  130. F. Domergue and D. K. Kosma, Plants 6, 25 (2017).
  131. K. Poralla, Cycloartenol and other triterpene cyclases, in “Comprehensive Natural Products Chemistry” Vol. 2, Edited by Sir Derek Barton and Koji Nakanishi, Pergamon Press, Elsevier (1999), pp. 299–319.
  132. N. Nasr, M. Elbatanony, and M. A. Hamed, Chem. Biodivers. e202401102 (2024).doi:10.1002/cbdv.202401102
  133. S. C. Chou, T. J. Huang, E. H. Lin, C. H. Huang, and C. H. Chou, Nat. Prod. Commun. 7, 153 (2012).
  134. M. Murata, Y. Nakai, K. Kawazu, M. Ishizaka, H. Kajiwara, H. Ab, K. Takeuchi, Y. Ichinose, I. Mitsuhara, A. Mochizuki, and S. Seo, Plant Physiol. 179, 1822 (2019).
  135. T. U. Jayawardena, H. Kim, K. K. A. Sanjeewa, S. Kim, J.-R. Rho, Y. Jee,
  136. G. Ahn, and Y. Jeon, Algal Res. 40, 101513 (2019).
  137. J. Silva, C. Alves, A. Martins, P. Susano, M. Simões, M. Guedes, S. Rehfeldt, S. Pinteus, H. Gaspar, A. Rodrigues, M. I. Goettert, A. Alfonso, and R. Pedrosa, Int. J. Mol. Sci. 22, 1888 (2021).
  138. M. A. Asiamah, T. A. Agana, Y. D. Boakye, C. Agyare, and F. Adu, J. Parasitol. Res. 2024, 5513489 (2024).
  139. O. Shuvalov, Y. Kirdeeva, E. Fefilova, S. Netsvetay, M. Zorin, Y. Vlasova,
  140. O. Fedorova, A. Daks, S. Parfenyev, and N. Barlev, Metabolites 13, 656 (2023).
  141. A. Suksamrarn, S. Kumpun, and B.-E. Yingyongnarongkul, J. Nat. Prod. 65, 1690 (2002).
  142. Y. Huang and V. Valiante, ChemBioChem 23, e202200173 (2022).
  143. D. Ferlinahayati, E. Alfarado, and B. Untari, Indones. J. Chem. 20, 307 (2020).
  144. J. K. P. Y. Sundar S., Asian J. Pharm. Clin. Res. 8, 179 (2015).
  145. M. I. Mhlongo, L. A. Piater, P. A. Steenkamp, N. Labuschagne, and I. A.
  146. Dubery, Metabolites 16, 466 (2022).
  147. L. D. Antika, A. N. Tasfiyati, H. Hikmat, and A. W. Septama, Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 77, 303 (2022).
  148. J. Nadal, F. de B. Pedroso, B. R. Minozzo, P. Salles de Brito, P. V. Farago,
  149. J. C. R. Vellosa, and E. Miyoshi, Brazilian Arch. Biol. Technol. 61 (2018).
  150. C. Singh, R. K. Saxena, and P. Tripathi, Int. J. Pharm. Qual. Assur. 14, 119 (2023).
  151. Z. Song, X. Xiang, J. Li, J. Deng, Z. Fang, L. Zhang, and J. Xiong, Oncol. Rep. 43, 516 (2020).
  152. G. Cao, N. Jiang, Y. Hu, Y. Zhang, G. Wang, M. Yin, X. Ma, K. Zhou, J. Qi, B. Yu, and J. Kou, Int. J. Mol. Sci. 17, 1418 (2016).
  153. G. Ercan, R. Ilbar Tartar, A. Solmaz, O. B. Gulcicek, O. O. Karagulle, S. Meric, H. Cayoren, R. Kusaslan, A. Kemik, D. Gokceoglu Kayali, S. Cetinel, and A. Celik, Asian J. Surg. 43, 405 (2020).
  154. F. Fu, Q. Lai, J. Hu, L. Zhang, X. Zhu, J. Kou, B. Yu, and F. Li,
  155. Antioxidants (Basel) 11, 583 (2022).
  156. M. Hu and S. An, Comput. Intell. Neurosci. 2022, 8066126 (2022).
  157. T. Y. Kim, B. Jo, N. Park, Y. Park, S. Kim, and M. H. Yang, Nat. Prod. Sci. 27, 251 (2021).
  158. J. Lee, D. Jung, W. Kim, J. Um, S. Yim, W. K. Oh, and D. R. Williams,
  159. ACS Chem. Biol. 8, 1803 (2013).
  160. N. A. Mfonku, A. T. Tadjong, G. T. Kamsu, N. Kodjio, J. Ren, J. A. Mbah, D. Gatsing, and J. Zhan, Chem. Pap. 75, 2067 (2021).
  161. L. Nevi, D. Costantini, S. Safarikia, S. Di Matteo, F. Melandro, P. B. Berloco, and V. Cardinale, Cells 8, 1443 (2019).
  162. P. Semwal, S. Painuli, T. Abu-izneid, A. Rauf, A. Sharma, S. D. Daştan,
  163. M. Kumar, M. M. Alshehri, Y. Taheri, R. Das, S. Mitra, T. Bin Emran, J. Sharifi-Rad, D. Calina, and W. C. Cho, Oxid. Med. Cell. Longev. 2022, 1035441 (2022).
  164. Q. Yuan, F. Xie, W. Huang, M. Hu, Q. Yan, Z. Chen, Y. Zheng, and L. Liu, Phyther. Res. 36, 164 (2022).
  165. E. Cohen, L. Koch, K. M. Thu, Y. Rahamim, Y. Aluma, M. Ilan, O. Yarden, and S. Carmeli, Bioorg. Med. Chem. 19, 6587 (2011).
  166. M. B. Majnooni, S. Fakhri, Y. Shokoohinia, M. Mojarrab, S. Kazemi- Afrakoti, and M. H. Farzaei, Molecules 25, 2040 (2020).
  167. M. Yavuz and T. Demircan, Mol. Biol. Rep. 50, 2611 (2023).
  168. R. Pemmereddy, K. S. Chandrashekar, S. R. K. Pai, V. Pai, A. Mathew, and B. Venkatesh Kamath, Rasayan J. Chem. 15, 1 (2022).
  169. S. Parveen, N. Maurya, A. Meena, and S. Luqman, Curr. Top. Med. Chem. 24, 343 (2024).
  170. A. Kumar, R. Rao, and P. Yadav, Curr. Drug ther. 15, 181 (2022).
  171. J. M. S. Faria, Biol. Life Sci. Forum 27, 4 (2023).
  172. K.-Y. Chen, Y.-J. Chen, C.-J. Cheng, K.-Y. Jhan, C.-H. Chiu, and L.-C. Wang, Biomed. J. 44, S258 (2021).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP