CARRAGEENANS AS A MULTIFACETED BIOMATERIAL IN THE ERA OF BIOMEDICAL AND ENVIRONMENTAL INNOVATION

- Carrageenans,
- biopolymers,
- applications,
- medical,
- environment
- foods ...More
Copyright (c) 2025 SChQ

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
Carrageenans are biomaterials of great interest due to their structural variability and physicochemical properties. This article provides a detailed review of the structural classification of carrageenans and its correlation with physical properties and specific applications, focusing on the various materials that can be obtained from them. Processing and modification methods are discussed to obtain gels, nanoparticles, films, and coatings, which possess unique properties that make them suitable for a wide range of applications. In the biomedical realm, carrageenans excel as scaffolds for tissue engineering, drug delivery systems, and wound healing materials, taking advantage of their biocompatibility and ability to form gels. In agriculture, they are used for the controlled release of fertilizers and pesticides, as well as biostimulants and soil improvers. In the food industry they act as thickening, stabilizing, and gelling agents in a wide range of products, from dairy to meat products, conferring texturising properties and improving stability. In addition, their role in environmental remediation is addressed, where in addition to their uses in agriculture to reduce the impact of different compounds, and water consumption, they are used for the removal of pollutants and water purification, thanks to their ability to form complexes with heavy metals and other pollutants.
This review highlights the potential of carrageenans to inspire future innovations in the design of materials and technologies, underlining the importance of exploring and fully exploiting their potential and that of their derivatives to address current and future challenges in various sectors.
References
- Halagali P, Kiran Raj G, Pokale R, Osmani RA, Bhosale R, Kazi H, et al. 8. Functionalized polysaccharide-based hydrogels: spanking accession in tissue engineering and regenerative medicines. In: Polysaccharides-Based Hydrogels [Internet]. Elsevier; 2024. p. 215–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323993418000089
- Huang M, Cong L, Ying R, Ahmad M, Hao G, Hayat K, et al. Polysaccharide-coated quercetin-loaded nanoliposomes mitigate bitterness: A comparison of carrageenan, pectin, and trehalose. Int J Biol Macromol [Internet]. 2024 Feb;259:129410. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813024002137
- Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, et al. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol [Internet]. 2024 Jan;256:128488. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023053874
- Chevenier A, Jouanneau D, Ficko-Blean E. Carrageenan biosynthesis in red algae: A review. Cell Surf [Internet]. 2023 Dec;9:100097. Available from: https://linkinghub.elsevier.com/retrieve/pii/S246823302300004X
- Hilliou L. Chapter Two - Hybrid Carrageenans: Isolation, Chemical Structure, and Gel Properties. In 2014. p. 17–43. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128002698000026
- Pangestuti R, Kim S-K. Biological Activities of Carrageenan. In 2014. p. 113–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128002698000075
- Tavakoli S, Kharaziha M, Kermanpur A, Mokhtari H. Sprayable and injectable visible-light Kappa-carrageenan hydrogel for in-situ soft tissue engineering. Int J Biol Macromol [Internet]. 2019 Oct;138:590–601. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813019329745
- Fan Z, Cheng P, Zhang P, Gao Y, Zhao Y, Liu M, et al. A novel multifunctional Salecan/κ-carrageenan composite hydrogel with anti-freezing properties: Advanced rheology, thermal analysis and model fitting. Int J Biol Macromol [Internet]. 2022 May;208:1–10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813022005244
- Narayanan KB, Bhaskar R, Choi SM, Han SS. Development of carrageenan-immobilized lytic coliphage vB_Eco2571-YU1 hydrogel for topical delivery of bacteriophages in wound dressing applications. Int J Biol Macromol [Internet]. 2024 Feb;259:129349. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813024001521
- İlhan GT, Irmak G, Gümüşderelioğlu M. Microwave assisted methacrylation of Kappa carrageenan: A bioink for cartilage tissue engineering. Int J Biol Macromol [Internet]. 2020 Dec;164:3523–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813020343348
- Anbardan MA, Alipour S, Mahdavinia GR, Rezaei PF. Synthesis of magnetic chitosan/hyaluronic acid/κ-carrageenan nanocarriers for drug delivery. Int J Biol Macromol [Internet]. 2023 Dec;253:126805. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023037029
- Kulal P, Badalamoole V. Hybrid nanocomposite of kappa-carrageenan and magnetite as adsorbent material for water purification. Int J Biol Macromol [Internet]. 2020 Dec;165:542–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813020345633
- Sharma AK, Gupta A, Dhiman A, Garg M, Mishra R, Agrawal G. Fe3O4 embedded κ-carrageenan/sodium alginate hydrogels for the removal of basic dyes. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2022 Dec;654:130155. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927775722019100
- Yu F, Pan J, Li Y, Yang Y, Zhang Z, Nie J, et al. Batch and continuous fixed-bed column adsorption of tetracycline by biochar/MOFs derivative covered with κ-carrageenan/calcium alginate hydrogels. J Environ Chem Eng [Internet]. 2022 Jun;10(3):107996. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213343722008697
- THERKELSEN GH. CARRAGEENAN. In: Industrial Gums [Internet]. Elsevier; 1993. p. 145–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780080926544500115
- Stanley N. Production and utilization of products from commercial seaweeds. FAO Fish Tech Pap. 1987;288:116–46.
- van de Velde F, Knutsen SH, Usov AI, Rollema HS, Cerezo AS. 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol [Internet]. 2002 Mar;13(3):73–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924224402000663
- Knutsen SH, Myslabodski DE, Larsen B, Usov AI. A Modified System of Nomenclature for Red Algal Galactans. Bot Mar [Internet]. 1994;37(2). Available from: https://www.degruyter.com/document/doi/10.1515/botm.1994.37.2.163/html
- Usov AI. Polysaccharides of the red algae. In 2011. p. 115–217. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123855206000042
- Stortz CA, Cerezo AS. The 13C NMR spectroscopy of carrageenans: calculation of chemical shifts and computer-aided structural determination. Carbohydr Polym [Internet]. 1992 Jan;18(4):237–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/0144861792900888
- Liu F, Duan G, Yang H. Recent advances in exploiting carrageenans as a versatile functional material for promising biomedical applications. Int J Biol Macromol [Internet]. 2023 Apr;235:123787. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023006815
- Campo VL, Kawano DF, Silva DB da, Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis – A review. Carbohydr Polym [Internet]. 2009 Jun;77(2):167–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861709000459
- Qamar SA, Junaid M, Riasat A, Jahangeer M, Bilal M, Mu B. Carrageenan‐Based Hybrids with Biopolymers and Nano‐Structured Materials for Biomimetic Applications. Starch - Stärke [Internet]. 2024 Jan;76(1–2). Available from: https://onlinelibrary.wiley.com/doi/10.1002/star.202200018
- Nanaki S, Karavas E, Kalantzi L, Bikiaris D. Miscibility study of carrageenan blends and evaluation of their effectiveness as sustained release carriers. Carbohydr Polym [Internet]. 2010 Mar 17;79(4):1157–67. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861709006250
- Dong Y, Wei Z, Xue C. Recent advances in carrageenan-based delivery systems for bioactive ingredients: A review. Trends Food Sci Technol [Internet]. 2021 Jun;112:348–61. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924224421002703
- Alavi F, Emam-Djomeh Z, Yarmand MS, Salami M, Momen S, Moosavi-Movahedi AA. Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocoll [Internet]. 2018 Dec;85:267–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0268005X18304466
- Elmarhoum S, Mathieu S, Ako K, Helbert W. Sulfate groups position determines the ionic selectivity and syneresis properties of carrageenan systems. Carbohydr Polym [Internet]. 2023 Jan;299:120166. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861722010712
- Bui VTNT, Nguyen BT, Nicolai T, Renou F. Mobility of carrageenan chains in iota- and kappa carrageenan gels. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2019 Feb;562:113–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927775718317059
- Li L, Ni R, Shao Y, Mao S. Carrageenan and its applications in drug delivery. Carbohydr Polym [Internet]. 2014 Mar;103:1–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861713012228
- Piculell L. Gelling carrageenans. Food polysaccharides their Appl. 1995;205–44.
- C. Viebke, L. Piculell SN. On the mechanism of gelation of helix-forming biopolymers. Macromolecules. 1994;4160–6.
- Nouri A, Rohani Shirvan A, Li Y, Wen C. Surface modification of additively manufactured metallic biomaterials with active antipathogenic properties. Smart Mater Manuf [Internet]. 2023;1:100001. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2772810222000010
- Wongsirichot P. Natural Renewable Polymers Part I: Polysaccharides. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering [Internet]. Elsevier; 2024. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780443157424000077
- Hou Y, Deng X, Xie C. Biomaterial surface modification for underwater adhesion. Smart Mater Med [Internet]. 2020;1:77–91. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2590183420300090
- Khan MUA, Aslam MA, Bin Abdullah MF, Hasan A, Shah SA, Stojanović GM. Recent perspective of polymeric biomaterial in tissue engineering– a review. Mater Today Chem [Internet]. 2023 Dec;34:101818. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468519423004457
- Xiao Z, Gu Y, Dong H, Liu B, Jin W, Li J, et al. Strategic application of CuAAC click chemistry in the modification of natural products for anticancer activity. Eur J Med Chem Reports [Internet]. 2023 Dec;9:100113. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2772417423000134
- Ghosh T, Das AK. Dynamic boronate esters cross-linked guanosine hydrogels: A promising biomaterial for emergent applications. Coord Chem Rev [Internet]. 2023 Aug;488:215170. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0010854523001595
- Salihu R, Abd Razak SI, Ahmad Zawawi N, Rafiq Abdul Kadir M, Izzah Ismail N, Jusoh N, et al. Citric acid: A green cross-linker of biomaterials for biomedical applications. Eur Polym J [Internet]. 2021 Mar;146:110271. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014305721000057
- Wang H-Y, Zhang Y, Zhang M, Zhang Y-Q. Functional modification of silk fibroin from silkworms and its application to medical biomaterials: A review. Int J Biol Macromol [Internet]. 2024 Feb;259:129099. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023059986
- Khan S, Qi K, Khan I, Wang A, Liu J, Humayun M, et al. Eco-friendly graphitic carbon nitride nanomaterials for the development of innovative biomaterials: Preparation, properties, opportunities, current trends, and future outlook. J Saudi Chem Soc [Internet]. 2023 Nov;27(6):101753. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1319610323001576
- Moskalewicz T, Warcaba M, Łukaszczyk A, Kot M, Kopia A, Hadzhieva Z, et al. Electrophoretic deposition, microstructure and properties of multicomponent sodium alginate-based coatings incorporated with graphite oxide and hydroxyapatite on titanium biomaterial substrates. Appl Surf Sci [Internet]. 2022 Feb;575:151688. Available from: https://linkinghub.elsevier.com/retrieve/pii/S016943322102732X
- Huang J, Sebastian S, Collin M, Tägil M, Lidgren L, Raina DB. A calcium sulphate/hydroxyapatite ceramic biomaterial carrier for local delivery of tobramycin in bone infections: Analysis of rheology, drug release and antimicrobial efficacy. Ceram Int [Internet]. 2023 Nov;49(21):33725–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0272884223022976
- Lim D-K, Wylie RG, Langer RS, Kohane DS. Corrigendum to “Selective binding of C-6OH sulfated hyaluronic acid to the angiogenic isoform of VEGF165” [Biomaterials 77(2016) 130–138]. Biomaterials [Internet]. 2024 Feb;122501. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961224000358
- Gomes MC, Mano JF. Chemical modification strategies to prepare advanced protein-based biomaterials. Biomater Biosyst [Internet]. 2021 Mar;1:100010. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666534421000039
- Kingshott P, Andersson G, McArthur SL, Griesser HJ. Surface modification and chemical surface analysis of biomaterials. Curr Opin Chem Biol [Internet]. 2011 Oct;15(5):667–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1367593111001190
- Gordobil O, Moriana R, Zhang L, Labidi J, Sevastyanova O. Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Ind Crops Prod [Internet]. 2016 May;83:155–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0926669015306324
- Huang H-G, Xiang T, Chen Y-X. Current Strategies of Surface Modifications to Polyurethane Biomaterials for Vascular Grafts. Chinese Med Sci J [Internet]. 2023;38(4):279. Available from: http://cmsj.cams.cn/EN/10.24920/004178
- Gharios R, Francis RM, DeForest CA. Chemical and biological engineering strategies to make and modify next-generation hydrogel biomaterials. Matter [Internet]. 2023 Dec;6(12):4195–244. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2590238523005131
- Benson R, He W. Polymeric Biomaterials. In: Applied Plastics Engineering Handbook [Internet]. Elsevier; 2024. p. 167–87. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323886673000229
- Pandian M, Reshma G, Arthi C, Másson M, Rangasamy J. Biodegradable polymeric scaffolds and hydrogels in the treatment of chronic and infectious wound healing. Eur Polym J [Internet]. 2023 Oct;198:112390. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014305723005736
- Marr PC, Marr AC. Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem [Internet]. 2016;18(1):105–28. Available from: http://xlink.rsc.org/?DOI=C5GC02277K
- Zhang D, Qiu J, Shi L, Liu Y, Pan B, Xing B. The mechanisms and environmental implications of engineered nanoparticles dispersion. Sci Total Environ [Internet]. 2020 Jun;722:137781. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969720312936
- Shi R, Sun TL, Luo F, Nakajima T, Kurokawa T, Bin YZ, et al. Elastic–Plastic Transformation of Polyelectrolyte Complex Hydrogels from Chitosan and Sodium Hyaluronate. Macromolecules [Internet]. 2018 Nov 13;51(21):8887–98. Available from: https://pubs.acs.org/doi/10.1021/acs.macromol.8b01658
- Hao D, Fan Y, Xiao W, Liu R, Pivetti C, Walimbe T, et al. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater [Internet]. 2020 May;108:178–93. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706120301379
- Wang T, Xu J, Zhu A, Lu H, Miao Z, Zhao P, et al. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury. Neural Regen Res [Internet]. 2016;11(10):1670. Available from: https://journals.lww.com/10.4103/1673-5374.193249
- Najafi M, Asadi H, van den Dikkenberg J, van Steenbergen MJ, Fens MHAM, Hennink WE, et al. Conversion of an Injectable MMP-Degradable Hydrogel into Core-Cross-Linked Micelles. Biomacromolecules [Internet]. 2020 May 11;21(5):1739–51. Available from: https://pubs.acs.org/doi/10.1021/acs.biomac.9b01675
- Zhu N, Zhuang Y, Sun W, Wang J, Wang F, Han X, et al. Multistructured hydrogel promotes nerve regeneration. Mater Today Adv [Internet]. 2024 Mar;21:100465. Available from: https://linkinghub.elsevier.com/retrieve/pii/S259004982400002X
- Kopeček J. Swell gels. Nature [Internet]. 2002 May;417(6887):389–91. Available from: https://www.nature.com/articles/417388a
- Sabadini RC, Fernandes M, Bermudez V de Z, Pawlicka A, Silva MM. Hydrogels Based on Natural Polymers Loaded with Bentonite and/or Halloysite: Composition Impact on Spectroscopic, Thermal, and Swelling Properties. Molecules [Internet]. 2023 Dec 25;29(1):131. Available from: https://www.mdpi.com/1420-3049/29/1/131
- Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci [Internet]. 2019;7(3):843–55. Available from: http://xlink.rsc.org/?DOI=C8BM01246F
- Hoque M, Alam M, Wang S, Zaman JU, Rahman MS, Johir M, et al. Interaction chemistry of functional groups for natural biopolymer-based hydrogel design. Mater Sci Eng R Reports [Internet]. 2023 Dec;156:100758. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927796X2300044X
- Xiao C, Wang R, Fu R, Yu P, Guo J, Li G, et al. Piezo-enhanced near infrared photocatalytic nanoheterojunction integrated injectable biopolymer hydrogel for anti-osteosarcoma and osteogenesis combination therapy. Bioact Mater [Internet]. 2024 Apr;34:381–400. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452199X24000033
- Gong JP. Why are double network hydrogels so tough? Soft Matter [Internet]. 2010;6(12):2583. Available from: http://xlink.rsc.org/?DOI=b924290b
- Ibrar I, Alsaka L, Yadav S, Altaee A, Zhou JL, Shon HK. Kappa carrageenan-vanillin composite hydrogel for landfill leachate wastewater treatment. Desalination [Internet]. 2023 Nov;565:116826. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0011916423004587
- Patel DK, Jung E, Priya S, Won S-Y, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym [Internet]. 2024 Jan;323:121408. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861723008731
- Nezamdoost-Sani N, Khaledabad MA, Amiri S, Phimolsiripol Y, Mousavi Khaneghah A. A comprehensive review on the utilization of biopolymer hydrogels to encapsulate and protect probiotics in foods. Int J Biol Macromol [Internet]. 2024 Jan;254:127907. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023048067
- Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov [Internet]. 2021 Feb 4;20(2):101–24. Available from: https://www.nature.com/articles/s41573-020-0090-8
- Chircov C, Grumezescu AM. Basics in nanoarchitectonics. In: Nanoarchitectonics in Biomedicine [Internet]. Elsevier; 2019. p. 1–21. Available from: https://www.nature.com/articles/s41573-020-0090-8
- Zhang H, Johnson AM, Hua Q, Wu J, Liang Y, Karaaslan MA, et al. Size-controlled synthesis of xylan micro / nanoparticles by self-assembly of alkali-extracted xylan. Carbohydr Polym [Internet]. 2023 Sep;315:120944. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861723004095
- Kotsuchibashi Y, Nakagawa Y, Ebara M. Nanoparticles. In: Biomaterials Nanoarchitectonics [Internet]. Elsevier; 2016. p. 7–23. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323371278000029
- Shrestha S, Wang B, Dutta P. Nanoparticle processing: Understanding and controlling aggregation. Adv Colloid Interface Sci [Internet]. 2020 May;279:102162. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001868619304816
- Ge Q, Rong S, Yin C, McClements DJ, Fu Q, Li Q, et al. Calcium ions induced ι-carrageenan-based gel-coating deposited on zein nanoparticles for encapsulating the curcumin. Food Chem [Internet]. 2024 Feb;434:137488. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814623021064
- Yan J, Guan Z-Y, Zhu W-F, Zhong L-Y, Qiu Z-Q, Yue P-F, et al. Preparation of Puerarin Chitosan Oral Nanoparticles by Ionic Gelation Method and Its Related Kinetics. Pharmaceutics [Internet]. 2020 Mar 2;12(3):216. Available from: https://www.mdpi.com/1999-4923/12/3/216
- Naga Mallikarjun Rao G, Vakkalagadda MRK. A review on synthesis, characterization and applications of nanoparticles in polymer nanocomposites. Mater Today Proc [Internet]. 2023 Sep; Available from: https://linkinghub.elsevier.com/retrieve/pii/S221478532304806X
- Lang Y, Wang M, Zhou S, Han D, Xie P, Li C, et al. Fabrication, characterization and emulsifying properties of myofibrillar protein-chitosan complexes in acidic conditions. Int J Biol Macromol [Internet]. 2024 Mar;262:130000. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813024008031
- Chuang F-J, Wang Y-W, Chang L-R, Chang C-Y, Cheng H-Y, Kuo S-M. Enhanced skin neocollagenesis through the transdermal delivery of poly-L-lactic acid microparticles by using a needle-free supersonic atomizer. Biomater Adv [Internet]. 2023 Nov;154:213619. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2772950823003424
- Callaghan C, Scott JL, Edler KJ, Mattia D. Continuous production of cellulose microbeads by rotary jet atomization. J Colloid Interface Sci [Internet]. 2022 Dec;627:1003–10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979722013017
- Raman N, Söllner J, Madubuko N, Nair S, Taccardi N, Thommes M, et al. Top-down vs. bottom-up synthesis of Ga–based supported catalytically active liquid metal solutions (SCALMS) for the dehydrogenation of isobutane. Chem Eng J [Internet]. 2023 Nov;475:146081. Available from: https://linkinghub.elsevier.com/retrieve/pii/S138589472304812X
- Jayanth N, Venkata Roshan M, Sakthi Balaji S, Durga Karthik P, Barathwaj A, Rishiyadhav G. Additive manufacturing of biomaterials: A review. Mater Today Proc [Internet]. 2023 Sep; Available from: https://linkinghub.elsevier.com/retrieve/pii/S221478532304871X
- Zhang DL. Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci [Internet]. 2004 Jan;49(3–4):537–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079642503000343
- Zhang L, Yin W, Shen S, Feng Y, Xu W, Sun Y, et al. ZnO nanoparticles interfere with top-down effect of the protozoan paramecium on removing microcystis. Environ Pollut [Internet]. 2022 Oct;310:119900. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0269749122011149
- Acosta MF, Morales M, Marcelo G, López-Esteban S, Esteban-Cubillo A, Rodríguez-Pascual PM, et al. Bottom up anatase monodisperse nanoparticles grown on sepiolite showing high thermal stability and optimal optical properties for self-cleaning applications. Appl Clay Sci [Internet]. 2023 Dec;246:107189. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169131723003769
- Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD, et al. Sol−Gel Synthesis of Organized Matter. Chem Mater [Internet]. 1997 Nov 1;9(11):2300–10. Available from: https://pubs.acs.org/doi/10.1021/cm970274u
- Schneider M, Rodríguez-Castellón E, Guerrero-Pérez MO, Hotza D, De Noni A, de Fátima Peralta Muniz Moreira R. Advances in electrospun composite polymer/zeolite and geopolymer nanofibers: A comprehensive review. Sep Purif Technol [Internet]. 2024 Jul;340:126684. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1383586624004234
- Lao M, Yin J, Xiao J, Tian Z, Li Z, Yin S, et al. Electrospinning synthesis of nanofiber membrane with biodegradable as sustained-release formulation of fenofibrate. Mater Lett [Internet]. 2024 Mar;358:135900. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167577X24000387
- Wongpanya P, Wongpinij T, Photongkam P, Siritapetawee J. Improvement in corrosion resistance of 316L stainless steel in simulated body fluid mixed with antiplatelet drugs by coating with Ti-doped DLC films for application in biomaterials. Corros Sci [Internet]. 2022 Nov;208:110611. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0010938X22005297
- Tessier PY, Pichon L, Villechaise P, Linez P, Angleraud B, Mubumbila N, et al. Carbon nitride thin films as protective coatings for biomaterials: synthesis, mechanical and biocompatibility characterizations. Diam Relat Mater [Internet]. 2003 Mar;12(3–7):1066–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S092596350200314X
- Sivaselvi K, Ghosh P. Polymer thin film coating on Biomaterial. Mater Today Proc [Internet]. 2018;5(2):3418–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214785317328602
- Jin W-J, Dong S, Guan J-P, Cheng X-W, Qin C-X, Chen G-Q. Multifunctional and sustainable DOPO-derivative coating for flame-retardant, antibacterial and UV-protective of polyamide 56 protective biomaterials. Surfaces and Interfaces [Internet]. 2023 Nov;42:103513. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468023023008829
- Feng C, Bonetti L, Lu H, Zhou Z, Lotti T, Jia M, et al. Extracellular polymeric substances as paper coating biomaterials derived from anaerobic granular sludge. Environ Sci Ecotechnology [Internet]. 2024 Sep;21:100397. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666498424000115
- Bhar A, Das S. The advancement of plant-based biopolymer development for films and coatings: Possibilities and challenges. In: Reference Module in Materials Science and Materials Engineering [Internet]. Elsevier; 2023. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323960205000509
- Chen K, Tian R, Jiang J, Xiao M, Wu K, Kuang Y, et al. Moisture loss inhibition with biopolymer films for preservation of fruits and vegetables: A review. Int J Biol Macromol [Internet]. 2024 Apr;263:130337. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813024011401
- Mei H, Piccardo P, Carraro G, Smerieri M, Spotorno R. Thin-film Li3InCl6 electrolyte prepared by solution casting method for all-solid-state batteries. J Energy Storage [Internet]. 2023 Nov;72:108244. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352152X23016419
- Haque Mizan MM, Rastgar M, Aktij SA, Asad A, Karami P, Rahimpour A, et al. Organic solvent-free polyelectrolyte complex membrane preparation: Effect of monomer mixing ratio and casting solution temperature. J Memb Sci [Internet]. 2023 Feb;668:121197. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0376738822009425
- Sridhar S, Suryamurali R, Smitha B, Aminabhavi TM. Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2007 Apr;297(1–3):267–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927775706008090
- Mejía Suaza ML, Hurtado Henao Y, Moncada Acevedo ME. Wet Electrospinning and its Applications: A Review. TecnoLógicas [Internet]. 2022 Jun 28;25(54):e2223. Available from: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2223
- Ahmad T, Guria C, Mandal A. Kinetic modeling and simulation of non-solvent induced phase separation: Immersion precipitation of PVC-based casting solution in a finite salt coagulation bath. Polymer (Guildf) [Internet]. 2020 Jun;199:122527. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0032386120303591
- Jebali S, Vayer M, Belal K, Mahut F, Sinturel C. Dip-coating deposition of nanocomposite thin films based on water-soluble polymer and silica nanoparticles. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2024 Jan;680:132688. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927775723017727
- Jácome-Martínez CR, Márquez-Marín J, Olvera-Amador M de la L, Castanedo-Pérez R, Torres-Delgado G. CuO thin films deposited by the dip-coating method as acetone vapor sensors: Effect of their thickness and precursor solution molarity. Micro and Nanostructures [Internet]. 2024 Mar;187:207753. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2773012324000025
- Li Q, Liang W, Lv L, Fang Z, Xu D, Liao J, et al. Preparation of PCL/lecithin/bacteriocin CAMT6 antimicrobial and antioxidant nanofiber films using emulsion electrospinning: Characteristics and application in chilled salmon preservation. Food Res Int [Internet]. 2024 Jan;175:113747. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0963996923012954
- Liu X, Song X, Gou D, Li H, Jiang L, Yuan M, et al. A polylactide based multifunctional hydrophobic film for tracking evaluation and maintaining beef freshness by an electrospinning technique. Food Chem [Internet]. 2023 Dec;428:136784. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814623014024
- Kong B, Xia C, Bin X, Gao B, Que W. MnO /Ti3C2T MXene/Carbon Nanofibers composite fiber film electrode with good flexibility derived by combining electrospinning technique with carbonization treatment. Mater Lett [Internet]. 2024 Apr;361:136160. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167577X24002982
- Varghese G, Moral M, Castro-García M, López-López JJ, Marín-Rueda JR, Yagüe-Alcaraz V, et al. Fabrication and characterisation of ceramics via low-cost DLP 3D printing. Boletín la Soc Española Cerámica y Vidr [Internet]. 2018 Jan;57(1):9–18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0366317517300948
- Christ J, Perrot A, Ottosen LM, Koss H. Rheological characterization of temperature-sensitive biopolymer-bound 3D printing concrete. Constr Build Mater [Internet]. 2024 Jan;411:134337. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0950061823040552
- Christ J, Leusink S, Koss H. Multi-axial 3D printing of biopolymer-based concrete composites in construction. Mater Des [Internet]. 2023 Nov;235:112410. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264127523008250
- Outrequin TCR, Gamonpilas C, Siriwatwechakul W, Sreearunothai P. Extrusion-based 3D printing of food biopolymers: A highlight on the important rheological parameters to reach printability. J Food Eng [Internet]. 2023 Apr;342:111371. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0260877422004253
- Kristo E, Biliaderis CG, Zampraka A. Water vapour barrier and tensile properties of composite caseinate-pullulan films: Biopolymer composition effects and impact of beeswax lamination. Food Chem [Internet]. 2007 Jan;101(2):753–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814606001610
- La Fuente Arias CI, González-Martínez C, Chiralt A. Lamination of starch/polyesters by thermocompression for food packaging purposes. Sustain Food Technol [Internet]. 2023;1(2):296–305. Available from: http://xlink.rsc.org/?DOI=D2FB00038E
- Butler IP, Banta RA, Tyuftin AA, Holmes J, Pathania S, Kerry J. Pectin as a biopolymer source for packaging films using a circular economy approach: Origins, extraction, structure and films properties. Food Packag Shelf Life [Internet]. 2023 Dec;40:101224. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214289423002016
- Grzebieniarz W, Biswas D, Roy S, Jamróz E. Advances in biopolymer-based multi-layer film preparations and food packaging applications. Food Packag Shelf Life [Internet]. 2023 Mar;35:101033. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214289423000108
- Hoque M, Gupta S, Santhosh R, Syed I, Sarkar P. Biopolymer-based edible films and coatings for food applications. In: Food, Medical, and Environmental Applications of Polysaccharides [Internet]. Elsevier; 2021. p. 81–107. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128192399000130
- Rovera C, Cozzolino CA, Ghaani M, Morrone D, Olsson RT, Farris S. Mechanical behavior of biopolymer composite coatings on plastic films by depth-sensing indentation – A nanoscale study. J Colloid Interface Sci [Internet]. 2018 Feb;512:638–46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S002197971731278X
- Jafari A, Farahani M, Sedighi M, Rabiee N, Savoji H. Carrageenans for tissue engineering and regenerative medicine applications: A review. Carbohydr Polym [Internet]. 2022 Apr;281:119045. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861721014326
- Jafari A, Hassanajili S, Ghaffari F, Azarpira N. Modulating the physico-mechanical properties of polyacrylamide/gelatin hydrogels for tissue engineering application. Polym Bull [Internet]. 2022 Mar 1;79(3):1821–42. Available from: https://link.springer.com/10.1007/s00289-021-03592-2
- Mirani B, Pagan E, Shojaei S, Dabiri SMH, Savoji H, Mehrali M, et al. Facile Method for Fabrication of Meter-Long Multifunctional Hydrogel Fibers with Controllable Biophysical and Biochemical Features. ACS Appl Mater Interfaces [Internet]. 2020 Feb 26;12(8):9080–9. Available from: https://pubs.acs.org/doi/10.1021/acsami.9b23063
- Loukelis K, Papadogianni D, Chatzinikolaidou M. Kappa-carrageenan/chitosan/gelatin scaffolds enriched with potassium chloride for bone tissue engineering. Int J Biol Macromol [Internet]. 2022 Jun;209:1720–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813022008364
- Kumari S, Mondal P, Chatterjee K. Digital light processing-based 3D bioprinting of κ-carrageenan hydrogels for engineering cell-loaded tissue scaffolds. Carbohydr Polym [Internet]. 2022 Aug;290:119508. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861722004131
- Sathain A, Monvisade P, Siriphannon P. Bioactive alginate/carrageenan/calcium silicate porous scaffolds for bone tissue engineering. Mater Today Commun [Internet]. 2021 Mar;26:102165. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352492821001574
- Moncada D, Rico M, Montero B, Rodríguez-Llamazares S, Feijoo-Bandín S, Gualillo O, et al. Injectable hybrid hydrogels physically crosslinked based on carrageenan and green graphene for tissue repair. Int J Biol Macromol [Internet]. 2023 Apr;235:123777. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023006712
- Haroon B, Sohail M, Minhas MU, Mahmood A, Hussain Z, Ahmed Shah S, et al. Nano-residronate loaded κ-carrageenan-based injectable hydrogels for bone tissue regeneration. Int J Biol Macromol [Internet]. 2023 Nov;251:126380. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023032762
- Chen X, Zhao G, Yang X, Liu F, Wang S, Zhao X. Preparation and characterization of ι-carrageenan nanocomposite hydrogels with dual anti-HPV and anti-bacterial activities. Int J Biol Macromol [Internet]. 2024 Jan;254:127941. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023048407
- Jafari H, Atlasi Z, Mahdavinia GR, Hadifar S, Sabzi M. Magnetic κ-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. Mater Sci Eng C [Internet]. 2021 May;124:112042. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493121001818
- Saluri K, Tuvikene R. Anticoagulant and antioxidant activity of lambda- and theta-carrageenans of different molecular weights. Bioact Carbohydrates Diet Fibre [Internet]. 2020 Oct;24:100243. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212619820300346
- Campos-Sánchez JC, Guardiola FA, Esteban MÁ. In vitro immune-depression and anti-inflammatory activities of cantharidin on gilthead seabream (Sparus aurata) leucocytes activated by λ-carrageenan. Fish Shellfish Immunol [Internet]. 2024 May;148:109470. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1050464824001141
- Sudhakar MP, Ali S, Chitra S. Scrutinizing the effect of rGO-cuttlefish bone hydroxyapatite composite infused carrageenan membrane towards wound reconstruction. Int J Biol Macromol [Internet]. 2024 Mar;262:130155. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813024009589
- Sathuvan M, Thangam R, Cheong K-L, Kang H, Liu Y. κ-Carrageenan-essential oil loaded composite biomaterial film facilitates mechanosensing and tissue regenerative wound healing. Int J Biol Macromol [Internet]. 2023 Jun;241:124490. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023013843
- Santamaría Vanegas J, Rozo Torres G, Barreto Campos B. Characterization of a κ-Carrageenan Hydrogel and its Evaluation as a Coating Material for Fertilizers. J Polym Environ [Internet]. 2019 Apr 2;27(4):774–83. Available from: http://link.springer.com/10.1007/s10924-019-01384-4
- Zhao BQ, Li XY, Liu H, Wang BR, Zhu P, Huang SM, et al. Results from long-term fertilizer experiments in China: The risk of groundwater pollution by nitrate. NJAS Wageningen J Life Sci [Internet]. 2011 Dec 1;58(3–4):177–83. Available from: https://www.tandfonline.com/doi/full/10.1016/j.njas.2011.09.004
- Withers P, Neal C, Jarvie H, Doody D. Agriculture and Eutrophication: Where Do We Go from Here? Sustainability [Internet]. 2014 Sep 2;6(9):5853–75. Available from: http://www.mdpi.com/2071-1050/6/9/5853
- Rozo G, Bohorques L, Santamaría J. Controlled release fertilizer encapsulated by a κ-carrageenan hydrogel. Polímeros [Internet]. 2019;29(3). Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282019000300403&tlng=en
- Aydınoğlu D, Karaca N, Ceylan Ö. Natural Carrageenan/Psyllium Composite Hydrogels Embedded Montmorillonite and Investigation of Their Use in Agricultural Water Management. J Polym Environ [Internet]. 2021 Mar 12;29(3):785–98. Available from: https://link.springer.com/10.1007/s10924-020-01914-5
- Dingley C, Cass P, Adhikari B, Daver F. Application of superabsorbent natural polymers in agriculture. Polym from Renew Resour [Internet]. 2024 Jan 16; Available from: http://journals.sagepub.com/doi/10.1177/20412479231226166
- Saleem S, Sharma K, Sharma V, Kumar V, Sehgal R, Kumar V. Polysaccharide-based super moisture-absorbent hydrogels for sustainable agriculture applications. In: Polysaccharides-Based Hydrogels [Internet]. Elsevier; 2024. p. 515–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978032399341800017X
- Kang H, Fan T, Lin Z, Shi Y, Xie X, Li L, et al. Development of chitosan/carrageenan macrobeads for encapsulation of Paenibacillus polymyxa and its biocontrol efficiency against clubroot disease in Brassica crops. Int J Biol Macromol [Internet]. 2024 Apr;264:130323. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813024011267
- Garcia VS, Gugliotta LM, Gutierrez CG, Gonzalez VDG. κ-Carrageenan Hydrogels as a Sustainable Alternative for Controlled Release of New Biodegradable Molecules with Antimicrobial Activities. J Polym Environ [Internet]. 2024 Feb 21; Available from: https://link.springer.com/10.1007/s10924-024-03189-6
- Milani P, França D, Balieiro AG, Faez R. Polymers and its applications in agriculture. Polímeros [Internet]. 2017 Sep 21;27(3):256–66. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282017000300256&lng=en&tlng=en
- Johnson MS, Veltkamp CJ. Structure and functioning of water‐storing agricultural polyacrylamides. J Sci Food Agric [Internet]. 1985 Sep 20;36(9):789–93. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jsfa.2740360905
- Thombare N, Mishra S, Siddiqui MZ, Jha U, Singh D, Mahajan GR. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr Polym [Internet]. 2018 Apr;185:169–78. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861718300183
- Montesano FF, Parente A, Santamaria P, Sannino A, Serio F. Biodegradable Superabsorbent Hydrogel IncreasesWater Retention Properties of Growing Media and Plant Growth. Agric Agric Sci Procedia [Internet]. 2015;4:451–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2210784315001151
- Li X, Li Q, Xu X, Su Y, Yue Q, Gao B. Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. J Taiwan Inst Chem Eng [Internet]. 2016 Mar;60:564–72. Available from: https://linkinghub.elsevier.com/retrieve/pii/S187610701500454X
- Azeem MK, Islam A, Rizwan M, Rasool A, Gul N, Khan RU, et al. Sustainable and environment Friendlier carrageenan-based pH-responsive hydrogels: swelling behavior and controlled release of fertilizers. Colloid Polym Sci [Internet]. 2023 Mar 20;301(3):209–19. Available from: https://link.springer.com/10.1007/s00396-023-05054-9
- van Tol de Castro TA, Tavares OCH, de Oliveira Torchia DF, Oliveira da Silva HF, de Moura OVT, Cantarino RE, et al. Organic fragments of k-carrageenan, lipids and peptides plus K-rich inorganic fraction in Kappaphycus alvarezii biomass are responsible for growth stimulus in rice plant when applied both foliar and root pathway. Algal Res [Internet]. 2023 Apr;71:103040. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211926423000735
- Weykam G, Thomas DN, Wiencke C. Growth and photosynthesis of the Antarctic red algae Palmaria decipiens (Palmariales) and Iridaea cordata (Gigartinales) during and following extended periods of darkness. Phycologia [Internet]. 1997 Sep 15;36(5):395–405. Available from: https://www.tandfonline.com/doi/full/10.2216/i0031-8884-36-5-395.1
- Hossain MM, Sultana F, Khan S, Nayeema J, Mostafa M, Ferdus H, et al. Carrageenans as biostimulants and bio-elicitors: plant growth and defense responses. Stress Biol [Internet]. 2024 Jan 3;4(1):3. Available from: https://link.springer.com/10.1007/s44154-023-00143-9
- Bi F, Iqbal S, Arman M, Ali A, Hassan M. Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. J Saudi Chem Soc [Internet]. 2011 Jul;15(3):269–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1319610310001195
- Thye K-L, Wan Abdullah WMAN, Balia Yusof ZN, Wee C-Y, Ong-Abdullah J, Loh J-Y, et al. λ-Carrageenan promotes plant growth in banana via enhancement of cellular metabolism, nutrient uptake, and cellular homeostasis. Sci Rep [Internet]. 2022 Nov 16;12(1):19639. Available from: https://www.nature.com/articles/s41598-022-21909-7
- Mamede M, Cotas J, Pereira L, Bahcevandziev K. Seaweed Polysaccharides as Potential Biostimulants in Turnip Greens Production. Horticulturae [Internet]. 2024 Jan 30;10(2):130. Available from: https://www.mdpi.com/2311-7524/10/2/130
- Ghannam A, Abbas A, Alek H, Al-Waari Z, Al-Ktaifani M. Enhancement of local plant immunity against tobacco mosaic virus infection after treatment with sulphated-carrageenan from red alga (Hypnea musciformis). Physiol Mol Plant Pathol [Internet]. 2013 Oct;84:19–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0885576513000404
- Mani SD, Nagarathnam R. Sulfated polysaccharide from Kappaphycus alvarezii (Doty) Doty ex P.C. Silva primes defense responses against anthracnose disease of Capsicum annuum Linn. Algal Res [Internet]. 2018 Jun;32:121–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211926417304526
- Necas, J., & Bartosikova L. Carrageenan: a review. Vet Med (Praha). 2013;58(4):187–205.
- Udo T, Mummaleti G, Mohan A, Singh RK, Kong F. Current and emerging applications of carrageenan in the food industry. Food Res Int [Internet]. 2023 Nov;173:113369. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0963996923009146
- Qiao D, Zhang Y, Lin L, Li K, Zhu F, Wang G, et al. Revealing the role of λ-carrageenan on the enhancement of gel-related properties of acid-induced soy protein isolate/λ-carrageenan system. Food Hydrocoll [Internet]. 2024 May;150:109608. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0268005X23011542
- Dille MJ, Knutsen SH, Draget KI. Gels and gelled emulsions prepared by acid-induced gelation of mixtures of faba bean (Vicia faba) protein concentrate and λ-carrageenan. Appl Food Res [Internet]. 2022 Dec;2(2):100174. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2772502222001342
- Zioga M, Apostolidi I, Pappas C, Evageliou V. Characterization of pectin and carrageenan edible films in the presence of lemon balm infusion. Food Hydrocoll [Internet]. 2024 May;150:109679. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0268005X23012250
- Buecker S, Grossmann L, Loeffler M, Leeb E, Weiss J. Thermal and acidic denaturation of phycocyanin from Arthrospira platensis: Effects of complexation with λ-carrageenan on blue color stability. Food Chem [Internet]. 2022 Jun;380:132157. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814622001182
- Benjamin O, Davidovich-Pinhas M, Shpigelman A, Rytwo G. Utilization of polysaccharides to modify salt release and texture of a fresh semi hard model cheese. Food Hydrocoll [Internet]. 2018 Feb;75:95–106. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0268005X17304782
- Jiang Q, Li S, Du L, Liu Y, Meng Z. Soft κ-carrageenan microgels stabilized pickering emulsion gels: Compact interfacial layer construction and particle-dominated emulsion gelation. J Colloid Interface Sci [Internet]. 2021 Nov;602:822–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979721009449
- Gu X, Hua S, Huang Y, Liu S, Wang Y, Zhou M, et al. κ-Carrageenan/konjac glucomannan composite hydrogel-based 3D porcine cultured meat production. Food Hydrocoll [Internet]. 2024 Jun;151:109765. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0268005X24000390
- Huang M, Theng AHP, Yang D, Yang H. Influence of κ-carrageenan on the rheological behaviour of a model cake flour system. LWT [Internet]. 2021 Jan;136:110324. Available from: https://linkinghub.elsevier.com/retrieve/pii/S002364382031313X
- Nallamilli T, Ketomaeki M, Prozeller D, Mars J, Morsbach S, Mezger M, et al. Complex coacervation of food grade antimicrobial lauric arginate with lambda carrageenan. Curr Res Food Sci [Internet]. 2021;4:53–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2665927121000046
- Buecker S, Grossmann L, Loeffler M, Leeb E, Weiss J. Influence of storage temperature on the stability of heat treated phycocyanin-λ-carrageenan complexes in liquid formulations. Green Chem [Internet]. 2022;24(10):4174–85. Available from: http://xlink.rsc.org/?DOI=D2GC00809B
- Bae J-E, Hong JS, Choi H-D, Kim Y-R, Baik M-Y, Kim H-S. Impact of starch granule-associated channel protein on characteristic of and λ-carrageenan entrapment within wheat starch granules. Int J Biol Macromol [Internet]. 2021 Mar;174:440–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014181302100252X
- Uddin MJ, Ampiaw RE, Lee W. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere [Internet]. 2021 Dec;284:131314. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0045653521017860
- Oladoye PO, Ajiboye TO, Omotola EO, Oyewola OJ. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng [Internet]. 2022 Dec;16:100678. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2590123022003486
- Hao R, Ji H, Gao L, Chen J, Shi Y, Yang J, et al. Grafted natural melanin κ-carrageenan hydrogel bead adsorbents: New strategy for bioremediation of cationic dye contamination in aqueous solutions. Chem Eng Res Des [Internet]. 2023 Nov;199:1–10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0263876223005804
- Radoor S, Kandel DR, Park K, Jayakumar A, Karayil J, Lee J. Low-cost and eco-friendly PVA/carrageenan membrane to efficiently remove cationic dyes from water: Isotherms, kinetics, thermodynamics, and regeneration study. Chemosphere [Internet]. 2024 Feb;350:140990. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0045653523032605
- EL-Ghoul Y, Alsamani S. Highly Efficient Biosorption of Cationic Dyes via Biopolymeric Adsorbent-Material-Based Pectin Extract Polysaccharide and Carrageenan Grafted to Cellulosic Nonwoven Textile. Polymers (Basel) [Internet]. 2024 Feb 21;16(5):585. Available from: https://www.mdpi.com/2073-4360/16/5/585
- Yu J, Tian S, Yao A, Hu H, Lan J, Yang L, et al. Compressible polydopamine modified pomelo peel powder/poly(ethyleneimine)/κ-carrageenan aerogel with pH-tunable charge for selective removal of anionic and cationic dyes. Carbohydr Polym [Internet]. 2024 Jan;323:121377. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861723008421
- Majooni Y, Fayazbakhsh K, Yousefi N. Encapsulation of Carrageenan/Graphene Oxide Hydrogels in 3d Printed Scaffolds for Dye Removal from Water. Chemosphere. 2024.
- AwedM, Mohamed RR, Kamal KH, Sabaa MW, Ali KA. Tosyl-carrageenan/alginate composite adsorbent for removal of Pb2+ ions from aqueous solutions. BMC Chem [Internet]. 2024 Jan 6;18(1):8. Available from: https://bmcchem.biomedcentral.com/articles/10.1186/s13065-023-01103-0
- Martin N. Resistencia bacteriana a ß-lactámicos: Evolución y mecanismos. Archivos Venezolanos de Farmacología y Terapéutica. Scielo. 2002;(http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0798-02642002000100016):107–16.
- Insituto de Salud Pública. Ministerio de Salud Chile. ISP informa sobre la resistencia a los antimicrobianos y los antibióticos más vendidos en Chile [Internet]. Ministerio de Salud Pública. 2019 [cited 2023 Nov 29]. Available from: https://www.ispch.gob.cl/noticia/isp-informa-sobre-la-resistencia-a-los-antimicrobianos-y-los-antibioticos-mas-vendidos-en-chile/#:~:text=5 antibióticos más vendidos,-Según un estudio&text=las farmacias privadas.-
- Nogueira J, António M, Mikhalev S, Fateixa S, Trindade T, Daniel-da-Silva A. Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water. Nanomaterials [Internet]. 2018 Dec 4;8(12):1004. Available from: http://www.mdpi.com/2079-4991/8/12/1004
- Yu F, Cui T, Yang C, Dai X, Ma J. κ-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity. Chemosphere [Internet]. 2019 Dec;237:124417. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0045653519316388
- Sharma P, Sharma M, Laddha H, Gupta R, Agarwal M. Non-toxic and biodegradable κ-carrageenan/ZnO hydrogel for adsorptive removal of norfloxacin: Optimization using response surface methodology. Int J Biol Macromol [Internet]. 2023 May;238:124145. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023010395