JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 3 (2017): Journal of the Chilean Chemical Society
Original Research Papers

EFFECT OF HYDRATION AND PACKING ORDER ON LARGE UNILAMELLAR VESICLE FUSION: THE ROLE OF CHOLESTEROL

Francisco J. Cuevas
Facultad de Ciencias Básicas, Universidad Santo Tomás
Carolina A. Valle
Instituto de Química, Pontificia Universidad Católica de Valparaíso
Luis F. Aguilar
Instituto de Química, Pontificia Universidad Católica de Valparaíso
Published September 2, 2017
How to Cite
Cuevas, F. J., Valle, C. A., & Aguilar, L. F. (2017). EFFECT OF HYDRATION AND PACKING ORDER ON LARGE UNILAMELLAR VESICLE FUSION: THE ROLE OF CHOLESTEROL. Journal of the Chilean Chemical Society, 62(3). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/322

Abstract

Several studies examining vesicle fusion have been reported in last decades and have established a number of factors favoring the process of vesicle fusion. To determine whether variations to the physicochemical properties of the membrane affect the process of vesicle fusion, we worked with binary and ternary mixtures of large unilamellar vesicles (LUVs). The selected binary models were dioleoyl phosphocholine-cholesterol (DOPC-chol) and disteraroyl phosphocholine-cholesterol (DSPC-chol), and the tertiary mixtures were phosphatidylcholine-phsophatidylethanolamine-cholesterol (PC-PE-Chol); phosphatidylcholine-sphingomyelin-cholesterol (PC-SM-Chol); and phosphatidylcholine-phosphatidylserine-cholesterol (PC-PS-Chol). For all these models, the effect of cholesterol content on the lamella physicochemical properties was determined using 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy, generalized polarization of 2-dimethylamino- 6-lauroylnaphthalene (Laurdan), and DPH fluorescence lifetime. To determine whether fusion of these vesicles varied according to lipid composition, the % mixing content and the % leakage were determined. Examining membrane incorporation using fluorescence steady-state and time-resolved probe assays in the models indicated that cholesterol content affected packing order and lamellar hydration. In most of the models, nonmonotonic variations were observed for these parameters, and these variations could be interpreted as increases in the proportion of ordered microdomains. When the proportion of these domains is higher, the packing order increases, and the lamellar water decrease. Similarly, the % mixing, which was assessed as a fusion parameter, also exhibited nonmonotonic behavior, indicating that the fusion process is enhanced at these concentrations of cholesterol. However, DSPC vesicles do not merge, so more than the presence of microdomains is required to stabilize fusion.

References

  1. A. Grafmuller, J. Shillcock and R. Lipowsky, Biophysical journal, 96, 2658-2675 (2009).
  2. S. J. Marrink and A. E. Mark, Journal of the American Chemical Society, 125, 11144-11145 (2003).
  3. R. J. Lee and P. S. Low, The Journal of biological chemistry, 269, 3198- 3204 (1994).
  4. S. L. Du, H. Pan, W. Y. Lu, J. Wang, J. Wu and J. Y. Wang, The Journal of pharmacology and experimental therapeutics, 322, 560-568 (2007).
  5. W. H. De Jong and P. J. Borm, International journal of nanomedicine, 3, 133-149 (2008).
  6. H. Shibata, S. Nakagawa, T. Mayumi and Y. Tsutsumi, Biological & pharmaceutical bulletin, 27, 1483-1488 (2004).
  7. G. Caracciolo, R. Caminiti, M. A. Digman, E. Gratton and S. Sanchez, The journal of physical chemistry. B, 113, 4995-4997 (2009).
  8. E. E. Oude Blenke, J. van den Dikkenberg, B. van Kolck, A. Kros and E. Mastrobattista, Nanoscale, 8, 8955-8965 (2016).
  9. K. Bacia, C. G. Schuette, N. Kahya, R. Jahn and P. Schwille, The Journal of biological chemistry, 279, 37951-37955 (2004).
  10. C. G. Schuette, K. Hatsuzawa, M. Margittai, A. Stein, D. Riedel, P. Kuster, M. Konig, C. Seidel and R. Jahn, Proc Natl Acad Sci USA, 101, 2858-2863 (2004).
  11. T. Lang, The Journal of physiology, 585, 693-698 (2007).
  12. M. Ma and D. Bong, Accounts of chemical research, 46, 2988-2997 (2013).
  13. B. Kolesinska, K. Eyer, T. Robinson, P. S. Dittrich, A. K. Beck, D. Seebach and P. Walde, Chemistry & biodiversity, 12, 697-732 (2015).
  14. A. Herrmann, L. Pratsch, K. Arnold and G. Lassmann, Biochimica et biophysica acta, 733, 87-94 (1983).
  15. B. R. Lentz, European biophysics journal : EBJ, 36, 315-326 (2007).
  16. V. S. Malinin, P. Frederik and B. R. Lentz, Biophysical journal, 82, 2090- 2100 (2002).
  17. V. S. Malinin and B. R. Lentz, Biophysical journal, 86, 2951-2964 (2004).
  18. V. S. Malinin and B. R. Lentz, Biochemistry, 41, 5913-5919 (2002).
  19. M. E. Haque, T. J. McIntosh and B. R. Lentz, Biochemistry, 40, 4340-4348 (2001).
  20. W. A. Talbot, L. X. Zheng and B. R. Lentz, Biochemistry, 36, 5827-5836 (1997).
  21. M. Tarshis, M. Salman and S. Rottem, Biophysical journal, 64, 709-715 (1993).
  22. J. Zhang, R. Xue, W. Y. Ong and P. Chen, Biophysical journal, 97, 1371- 1380 (2009).
  23. J. Chang, S. A. Kim, X. Lu, Z. Su, S. K. Kim and Y. K. Shin, Biophysical journal, 96, 1839-1846 (2009).
  24. B. Rituper, A. Flasker, A. Gucek, H. H. Chowdhury and R. Zorec, Cell calcium, 52, 250-258 (2012).
  25. M. R. Ali, K. H. Cheng and J. Huang, Proc Natl Acad Sci USA, 104, 5372- 5377 (2007).
  26. P. J. Somerharju, J. A. Virtanen, K. K. Eklund, P. Vainio and P. K. Kinnunen, Biochemistry, 24, 2773-2781 (1985).
  27. J. A. Virtanen, M. Ruonala, M. Vauhkonen and P. Somerharju, Biochemistry, 34, 11568-11581 (1995).
  28. P. L. Chong, D. Tang and I. P. Sugar, Biophysical journal, 66, 2029-2038 (1994).
  29. D. Tang and P. L. Chong, Biophysical journal, 63, 903-910 (1992).
  30. F. J. Cuevas, D. M. Jameson and C. P. Sotomayor, Biochemistry, 45, 13855-13868 (2006).
  31. C. P. Sotomayor, L. F. Aguilar, F. J. Cuevas, M. K. Helms and D. M. Jameson, Biochemistry, 39, 10928-10935 (2000).
  32. R. D. Spencer; and G. Weber, Ann NY Acad Sci, 158, 361-376 (1969).
  33. E. Gratton, D. M. Jameson, G. Weber and B. Alpert, Biophysical journal, 45, 789-794 (1984).
  34. D. M. Jameson and T. L. Hazlett, in Biophysical and biochemical aspects of fluorescence spectroscopy, ed. T. G. Dewey, Plenum Press, New York, pp. 105-133 (1991).
  35. T. Parasassi, G. De Stasio, A. d’Ubaldo and E. Gratton, Biophysical journal, 57, 1179-1186 (1990).
  36. D. C. Mitchell and B. J. Litman, Biophysical journal, 75, 896-908 (1998).
  37. B. Cannon, A. Lewis, P. Somerharju, J. Virtanen, J. Huang and K. H. Cheng, The journal of physical chemistry. B, 114, 10105-10113 (2010).
  38. L. F. Aguilar, J. A. Pino, M. A. Soto-Arriaza, F. J. Cuevas, S. Sanchez and C. P. Sotomayor, PloS one, 7, e40254 (2012).
  39. D. E. Lee, M. G. Lew and D. J. Woodbury, Chemistry and physics of lipids, 166, 45-54 (2013).
  40. J. Lee and B. R. Lentz, Biochemistry, 36, 6251-6259 (1997).
  41. J. Lee and B. R. Lentz, Biochemistry, 36, 421-431 (1997).
  42. S. Martens, M. M. Kozlov and H. T. McMahon, Science, 316, 1205-1208 (2007).
  43. M. A. Churchward, T. Rogasevskaia, D. M. Brandman, H. Khosravani, P. Nava, J. K. Atkinson and J. R. Coorssen, Biophysical journal, 94, 3976- 3986 (2008).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP