JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 4 (2017): Journal of the Chilean Chemical Society
Original Research Papers

ANTIBACTERIAL ACTIVITY AND HUMAN CELL CYTOTOXIC OF COBALT (III) COMPLEXES WITH 1,10-PHENANTHROLINE AND CARBOHYDRATE LIGANDS

José Parada
Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
Ana María Atria
Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
Ricardo Baggio
Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión de Energía Atómica
Guillermo Wiese
Laboratorio de Bacteriología Molecular, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile
Sebastián Lagos
Laboratorio de Bacteriología Molecular, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile
Alequis Pavón
Laboratorio de Bacteriología Molecular, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile
Elizabeth Rivas
Laboratorio de Bacteriología Molecular, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile
Laura Navarro
Laboratorio de Bacteriología Molecular, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile
Gino Corsini
Laboratorio de Bacteriología Molecular, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile
Published February 9, 2018
Keywords
  • Phenanthroline,
  • Cobalt,
  • complexes,
  • Carbohydrate,
  • antibacterial,
  • cytotoxicity
  • ...More
    Less

Abstract

The mononuclear cobalt (III) complex derived from 1,10-phenanthroline with lactose [Co(phen)2lactose]Cl2·3H2O (1) has been prepared and its properties have been compared with the sucrose complex [Co(phen)2sucrose]Cl2·3H2O (2) and the complex without carbohydrate [Co(phen)2Cl2]Cl·3H2O (3).

The chemical structure of (1) was assigned by 1H-NMR, IR, CD and UV-Vis spectral data. The antibacterial activity of (1) - (3) was evaluated by disc-diffusion assays, using Gram-negative and positive bacteria. The minimum inhibitory concentration of the three complexes on the studied bacteria and their cytotoxicity on HEK293 human cells was determined. A colorimetric plate assay was used to distinguish bacteriostatic from bactericidal effect. Finally, the complexes uptake mechanism was evaluated using bacteria with mutated genes that encode for carbohydrate and siderophore receptors. The results indicate that complex (1) has an antibacterial activity similar to (3), while (2) presents a more restricted one. Moreover, all three complexes act by a bacteriostatic effect against bacterial cells and both (1) and (3) use a siderophore uptake mechanism to enter on bacterial cytoplasm. Cytotoxicity assays show that carbohydrate complexes are not cytotoxic to human cells, in contrast with complex (3), which is highly toxic. These results suggest that the use of the lactose ligand would maintain the antibacterial activity and uptake mechanism of the complex at reasonable levels, and would also reduce its toxicity against human cells. Thus, its strategic use would allow a decrease in toxicity of complexes used in eventual studies on eukaryotic systems.

References

  1. B. S. Sekhon, J. Pharm. Educ. Res. 2, 1, (2011).
  2. A. K. Ghosh, M. Mitra, A Fathima, H. Yadav, A.R. Choudhury, B.U. Nair, R. Ghosh, Polyhedron 107, 1, (2016).
  3. K. Alomar, A. Landreau, M. Allain, G. Bouet, G. Larcher, J. Inorg. Biochem. 126, 76, (2013).
  4. K. D. Mjos and C. Orvig, Chem. Rev. 114, 4540, (2014).
  5. S. V. Kumar, S. Scottwell, E. Waugh, C. J. McAdam, L. R. Hanton, H. J. L. Brooks, J. D. Crowley, Inorg. Chem. 55, 9767, (2016).
  6. M. Salehi, M. Hasanzadeh, Inorg. Chim. Acta 426, 6, (2015).
  7. L. Tabrizi, P. McArdle, M. Ektefan, H. Chiniforoshan, Inorg. Chim. Acta 439, 138, (2016).
  8. M. Salehi, M. Amirnasr, S. Meghdadi, K. Mereiter, H.R. Bijanzadeh, A. Khaleghian, Polyhedron 81, 90, (2014).
  9. P. Fernandes, I. Sousa, L. Cunha-Silva, M. Ferreira, B. de Castro, E.F. Pereira, M.J. Feio, P. Gameiro, J. Inorg. Biochem. 131, 21, (2014).
  10. D.U. Miodragovic, G.A. Bogdanovic, Z.M. Miodragovic, M.D. Radulovic, S.B. Novakovic, G.N. Kaludjerovic, H. Kozlowski, J. Inorg. Biochem. 100, 1568, (2006).
  11. K. Nomiya, A. Yoshizawa, K. Tsukagoshi, N.C. Kasuga, S. Hirakawa, J. Watanabe. J. Inorg. Biochem. 98, 46, (2004).
  12. D. Bandyopadhyay, M. Layek, M. Fleck, R. Saha, C. Rizzoli, Inorg. Chim. Acta 461, 174, (2017).
  13. H. Keypour, M. Mahmoudabadi, A. Shooshtari, M. Bayat, M. Ghassemzadeh, L. Hosseinzadeh, F. Mohsenzadeh, K. Harms, Polyhedron 129, 189, (2017).
  14. R. Sethi, M. Ahuja, Int. Pharm. Tech. Res. 9 (1), 35, (2016).
  15. C. X. Zhang, S.J. Lippard, Curr. Opin. Chem. Biol. 7, 481, (2003).
  16. T.W. Failes, T.W. Hambley, Dalton Trans. 1895, (2006).
  17. B. Coyle, K. Kavanagh, M. McCann, M. Devereux, M. Geraghty, Biometals. 16, 321, (2003).
  18. H. Gopinathan, N. Komathi, M.N. Arumugham, Inorg. Chim. Acta 416, 93, (2014).
  19. P. Heffeter, M.A. Jakupec, W. Körner, S. Wild, N.G. von Keyserlingk, L.Elbing, H. Zorbas, A. Korynevska, S. Knasumüller, H. Sutterlüty, M. Micksche, B.K. Keppler, W. Berger, Biochem. Pharm. 71, 426, (2006).
  20. P. Gameiro, C. Rodrigues, T. Baptista, I. Sousa, B. de Castro, Int. J. Pharm. 334, 129, (2007).
  21. A. T. Colak, P. Oztopcu-Vatan, F. Colak, D. Akduman, S. Kabadere, R. Uyar, J. Trace Elem. Med. Biol. 27, 295, (2013).
  22. M. A. Zoroddu, S. Zanetti, R. Pogni, R, Basosi, J. Inorg. Biochem. 63 (4), 291, (1996).
  23. S. S. Hindo, M. Frezza, D. Tomco, M. J. Heeg, L. Hryhorczuk, B. R. McGarvey, Q. P. Dou, C.N. Verani, Eur. J. Med. Chem. 44, 4353, (2009).
  24. P. F. Liguori, A. Valentini, M. Palma, A. Bellusci, M. Palma, A. Bellusci, S. Bernardini M. Ghedini, M. L. Panno, C. Pettinari, F. Marchetti, A. Crispini, D. Pucci, Dalton Trans. 39, 4205, (2010).
  25. M. Geraghty, V. Sheridan, M. McCann, M. Devereux, V. McKee, Polyhedron 18, 2931, (1999).
  26. L.R McDowell,Vitamins in Animal and Human Nutrition. Iowa State University Press, Ames, 2000.
  27. G.T Taylor, C.W. Sullivan, Limnol. Oceanogr. 53 (5), 1862, (2008).
  28. J. M. Pratt, Inorganic chemistry of vitamin B12. Academic Press, New York, 1972.
  29. E. C. Hatchikian, Biochem. Biophys. Res. Commun. 103, 521, (1981).
  30. E.L. Chang, C. Simmers, D. A.Knight, Pharmaceuticals 3, 1711, (2010).
  31. R. S. Kumar, P. Paul, A. Riyasdeen, G. Wagniéres, H. van den Bergh, M. A. Akbarsha, S. Arunachalam, Colloids and Surfaces B: Biointerfaces, 86, 35, (2011).
  32. B. Zarranz, A. Jaso, I. Aldana, A. Monge, Bioorg. Med. Chem. 11, 2149, (2003).
  33. J. J. Irbaraj, A.G. Motten, C.F. Chignell, Chem. Res. Toxicol. 16, 164, (2003).
  34. a) J. Parada, S. Bunel, C. Ibarra, G. Larrazábal, E. Moraga, Carbohydr. Res. 329, 195, (2000). b) J. Parada, G. Larrazábal, Polyhedron 23, 1341, (2004).
  35. A.V. Ablov, Russ. J. Inorg. Chem. 6, 157, (1961).
  36. K. L. Kwaniewska, Bull. Environ. Contam. Toxicol. 27, 289, (1981).
  37. National Committee for Clinical Laboratory Standards: Methods for Dilution. Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Fifth Edition: Approved Standard M7-A5. NCCLS, Wayne, PA, USA, 2000.
  38. G. Mardones, A. Venegas, J. Microbiol. Meth. 40, 199, (2000).
  39. S. Maher, M. McClean, Biochem. Pharmacol. 71, 1289, (2006).
  40. a) C. J. Hawkins, Absolute Configuration of Metal Complexes, Wiley, New York, 1971. b) K. Nakanishi, N. R. W. Berova, Woody (Eds.), Circular Dichroism, Principles and Applications, VCH, Cambridge, 1994.
  41. I. Tinoco, Adv. Chem. Phys. 4, 113, (1962). b) F.S. Richardson, J. Chem. Phys. 54, 2453, (1971).
  42. J. Parada, S. Bunel, C. Ibarra, G. Larrazábal, E. Moraga, N.G. Gillitt, C. A. Bunton, Carbohydr. Res. 333, 185, (2001).
  43. J. Parada, A.M. Atria, G. Weiss, E. Rivas, G. Corsini, J. Chil. Chem. Soc. 59, 2636, (2014).
  44. R. S. Kumar, S. Arunachalam, Biophys. Chem. 136, 136, (2008).
  45. H. Chiniforoshan, Z. Sadeghian Radani, L. Tabrizi, H. Tavakol, M. R. Sabzalian, G. Mohammadnezhad, H. Görls, W. Plass, J. Mol. Struct. 1081, 237, (2015).
  46. P. Cortés-Cortés, A.M. Atria, M. Contreras, O. Peña, K. Fernandez, G. Corsini, J. Chil. Chem. Soc. 53, 1527, (2008).
  47. A.M. Atria, P. Cortés-Cortés, M.T. Garland, R. Baggio, K. Morales, M. Soto, G. Corsini, J. Chil. Chem. Soc. 56, 786, (2011).
  48. M. H. Saier, Mol. Microbiol. 35, 699, (2000).
  49. K. Schauer, B. Gouget, M. Carrière, A. Labigne, H. De Reuse, Mol. Microbiol. 63, 1054, (2007).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP