JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 63 No 2 (2018): Journal of the Chilean Chemical Society
Original Research Papers

FLOW-INJECTION SPECTROMETRIC DETERMINATION OF SODIUM DICLOFENAC IN PHARMACEUTICAL FORMULATIONS

E. F. Silva
Departamento de Química, Universidade Federal do Maranhão
P. R. B. Gomes
Departamento de Química, Universidade Federal do Maranhão
R. N. Fernandes
Departamento de Química, Universidade Federal do Maranhão
W. S. Lyra
Departamento de Química, Universidade Federal da Paraíba
Published June 25, 2018
Keywords
  • Sodium diclofenac,
  • flow-injection analysis,
  • injectable solutions,
  • tablets
How to Cite
Silva, E. F., Gomes, P. R. B., Fernandes, R. N., & Lyra, W. S. (2018). FLOW-INJECTION SPECTROMETRIC DETERMINATION OF SODIUM DICLOFENAC IN PHARMACEUTICAL FORMULATIONS. Journal of the Chilean Chemical Society, 63(2). Retrieved from https://www.jcchems.com/index.php/JCCHEMS/article/view/674

Abstract

A flow-injection spectrometric method for determination of sodium diclofenac in pharmaceutical formulations was developed on this work. Sodium diclofenac solutions were injected into a stream of deionized water that reacted with potassium permanganate on acid medium producing Mn2+ ions whose exhibit maximum absorbance at 450 nm. The methodology used optimize experimental parameters was 33 factorial design and response surface. The proposed method obeyed the Beer’s Law over the range 25-160 mg L-1, applied in tablets and ampoules samples. Results were compare with the reference method. It was verified at the 95% confidence level, through paired t-test application – there is no statistic difference between them. The detection limit was valued in 2.6 mg L-1, relative standard deviation for 10 consecutive injections was 1.5% (100.0 mg L-1 sodium diclofenac solution) and the sample throughput was 80 samples h-1. Regarding optimization of operational conditions, the FIA spectrometric method presented analytical performance as good as other elaborated flow analyzers. Offers a simple and inexpensive way to this drug indirect determination aiming quality control on pharmaceutical industry’s assembly line. However, it can not be used for adulteration screening analysis due to non-selectivity and non-specificity of redox reactions.

References

  1. R. L. Souza, M. Tubino, J. Braz. Chem. Soc., 16, 1068, (2011).
  2. R. S. Rocha, A. A. G. F. Beati, J. G. Oliveira, M. R. V. Lanza, Quím. Nova, 32, 354, (2009).
  3. M. M. Issa, R. M. Nejem, M. Al-Kholy, N. S. El-Abdala, R. S. Helles, A. A. Saleh, J. Serb. Chem. Soc., 73, 569, (2008).
  4. E. G. Ciapina, A. O. Santini, P. L. Weinert, M. A. Gotardo, H. R. Pezza, L. Pezza, Ecl. Quím., 30, 29, (2005).
  5. The United States Pharmacopoeia – National Formulary, USP-NF XXIII.
  6. Farmacopéia Brasileira, Atheneu Editora, São Paulo, 5th edn, 2010.
  7. J. Freer, C. Baeza, D. Contreras, C. Soto, S. Corrales, N. Moreno, J. Chil. Chem. Soc., 59, 2632, (2014).
  8. European Pharmacopoeia, Concil of Europe, Strasbourg, 3rd edn, 1997.
  9. R. T. Sane, R. S. Samant, V. G. Nayak, Drug Dev. Ind. Pharm., 13, 1307, (1987).
  10. J. Klimes, J. Sochor, P. Dolezal, J. Körner, Int. J. Pharm., 217, 153, (2001).
  11. W. S. Lyra, F. A. C. Sanches, F. A. S. Cunha, P. H. G. D. Diniz, S. G. Lemos, E. C. Silva, M. C. U. Araujo, Anal. Methods, 3, 1975, (2011).
  12. M. S. Aurora-Prado, M. Steppe, M. F. M. Tavares, E. R. M. Kedor- Hackman, M. I. R. M. Santoro, J. Assoc. Off. Anal. Chem., 85, 333, (2002).
  13. W. R. Jin, J. Zhang, J. Chromatogr. A, 868, 101, (2000).
  14. M. E. Abdel-Hamid, L. Novotony, H. Hamza, J. Pharm. Biomed. Anal., 24, 587, (2001).
  15. R. Bucci, A. D. Magri, A. L. Magri, J. Therm. Anal. Calorim., 61, 369, (2000).
  16. S. A. A. Fattad, S. Z. El-Khateeb, S. A. A. Razeg, M. S. Tawakkol, Spectrosc. Lett., 21, 533, (1988).
  17. S. T. Ulu, J. Food Drug Anal., 19, 94, (2011).
  18. L. C. Luiz, M. J. V. Bell, R. A. Rocha, T. O. Mendes, V. C. Anjos, R. Bras. Ci. Saúde, 18, 219, (2014).
  19. B. K. Chethana, S. Basavanna, Y. A. Naik, Ind. Eng. Chem. Res., 51, 10287, 2012.
  20. E. Afshar, F. Jalali, J. Chil. Chem. Soc., 61, 2846, (2016).
  21. J. C. Botelho, G. P. Caballero, Talanta, 42, 105, (1995).
  22. M. S. Bhatia, S. R. Dhaneshwar, The Eastern Pharmacist, 38, 133, (1995).
  23. Y. K. Agrawal, K. Shivramchadra, J. Pharm. Biomed. Anal., 9, 97, (1991).
  24. S. Agatonović-Kuštrin, L. Živanović, D. Radulović, M. Vasiljević, Analyst, 116, 753, (1991).
  25. C. S. P. Sastry, A. S. R. P. Tipirneni, M. V. Suryanaryana, Analyst, 114, 513, (1989).
  26. B. V. Kamath, K. Shivram, Anal. Lett., 26, 903, (1993).
  27. S. Agatonović-Kuštrin, L. Živanović, M. Zečević, D. Radulović, J. Pharm. Biomed. Anal., 16, 146, (1997).
  28. R. Bucci, A. D. Magri, A. L. Magri, Fres. J. Anal. Chem., 362, 577, (1998).
  29. M. L. F. Cordova, P. O. Barrales, A. M. Diaz, Anal. Chim. Acta, 369, 262, (1998).
  30. B. V. Kamath, K. Shivram, G. P. Oza, S. Vangani, Anal. Lett. 26, 665, (1993).
  31. Y. K. Agrawal, V. P. Upadyay, S. K. Menon, Indian J. Pharm. Sci., 50, 58, (1988).
  32. Z. A. E. Sherif, M. I. Walash, M. F. E. Tarras, A. O. Osman, Anal. Lett., 30, 1881, (1997).
  33. I. Kramancheva, I. Dobrev, L. Brakalov, Anal. Lett., 30, 2235, (1997).
  34. Y. C. de Micalizzi, N. B. Pappano, N. B. Debattista, Talanta, 47, 525, (1998).
  35. A. M. El-Didamony, A. S. Amin, Anal. Lett., 37, 1151, (2004).
  36. R. L. Souza, M. Tubino, J. Braz. Chem. Soc., 16, 1068, (2005).
  37. A. A. Gouda, M. I. Kotb El-Sayed, A. S. Amin, R. El Sheikh, Arab. J. Chem., 6, 145, (2013).
  38. Z. Song, N. Zhang, Talanta, 60, 161, (2003).
  39. P. L. Weinert, L. Pezza, H. R. Pezza, J. Braz. Chem. Soc., 18, 846, (2007).
  40. P. T. Anastas, Crit. Rev. Anal. Chem., 29, 167, (2010).
  41. F. R. P. Rocha, B. F. Reis, E. A. G. Zagatto, J. L. F. C. Lima, J. L. M. Santos, Anal. Chim. Acta, 468, 119, (2002).
  42. A. Parikh, K. Patel, C. Patel, P. B. N., J. Chem. Pharm. Res., 2, 118, (2010).
  43. J. Ruzicka, E. H. Jansen, Anal. Chim. Acta, 78, 145, (1975).
  44. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 4th Edition, Saunders College Publishing, New York, 1992.
  45. M. S. García, M. I. Albero, C. Sánchez-Pedreño, J. Molina, J. Pharm. Biomed. Anal., 17, 267, (1998).
  46. S. García, C. Sánchez-Pedreño, I. Albero, C. García, Mikrochim. Acta, 136, 67, (2001).
  47. B. V. Kamath, K. Shivram, A. C, Shah, J. Pharm. Biomed. Anal., 12, 343, (1994).
  48. S. S. Simões, E. P. Medeiros, E. N. Gaião, W. S. Lyra, P. N. T. Moreira, M. C. U. Araújo, E. C. Silva, V. B. Nascimento, J. Braz. Chem. Soc., 17, 609, (2006).
  49. F. F. Gambarra, R. S. Lima, W. S. Lyra, G. Marino, M. C. U. Araujo, E. P. Medeiros, V. B. Nascimento, Anal. Lett., 40, 3070, (2007).
  50. A. M. Idris, Chem. Cent. J., 5, 9, (2011).
  51. M. A. Morsy, M. M. Khaled, Spectrochim. Acta A, 58, 1271, (2002).
  52. J. Neugebauer, E. J. Baerends, M. Nooijen, J. Phys. Chem. A, 109, 1168, (2005).
  53. S. M. Sultan, H. D. Mohamed, A. Jaber, N. A. Alarfaj, J. Flow Injection Anal., 27, 49, (2010).
  54. B. N. Figgs, Introduction to ligand fields, Interscience Publishers, 1966.
  55. E. Morgan, Chemometrics: experimental design, John Wiley & Sons, London, 1991.
  56. D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, New York, 1997.
  57. J. N. Miller, J. C. Miller, Statistics and chemometrics for analytical chemistry, Pearson Prentice Hall, Harlow, 2004.
  58. R. E. Bruns, I. Scarmínio, B. Barros Neto, Statistical design: chemometrics, Elsevier, Amsterdam, 2006.
  59. N. R. Draper, H. Smith, Applied Regression Analysis, 3rd Edition, Wiley, New York, 1998.
  60. IUPAC, Pure Appl. Chem., 45, 99, (1976).
  61. J. A. Rodriguez, G. Islas, M. E. Paez-Hernadez, E. Barrado, J. Flow Injection Anal., 25, 39, (2008).
  62. P. R. Gomes, H. S. Lima, A. J. D. Lima, R. N. Fernandes, W. S. Lyra, F. A. S. Cunha, E. F. Silva, M. L. B. Ferreira, W. S. Lima, Rev. Virtual Quím., 9, 563, (2017).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP